Study in mice shows mechanisms behind immune responses to brain tumors

Jan 13, 2009

Findings from a study conducted in mice, published in the open access journal PLoS Medicine next week, provide new insights into how an effective immune response to brain tumors could potentially be brought about in humans.

Maria Castro, of the Cedars Sinai Medical Center in Los Angeles, and colleagues tested a new combined treatment strategy designed to encourage the immune system to respond and kill tumor cells from a particularly aggressive cancer called glioblastoma multiforme (GBM). GBM accounts for a fifth of all primary brain tumors and only one in twenty people survives for more than five years after being diagnosed with it. Therapies that have been tried with the goal of inducing an immune response against GBM have been unsuccessful in the past, partly because the brain contains few dendritic cells - immune cells which recognise tumor antigens and present them to other cells in the immune system.

In this study, after establishing brain tumors in mice, the researchers injected two harmless viruses into the tumors. One of these viruses successfully attracted dendritic cells into the brain; the other, in combination with a drug which was delivered systemically, killed tumor cells, causing the release of a protein, high-mobility-group box 1, from dying tumor cells. This ultimately allowed the immune system to identify and eliminate the tumor.

It should be stressed that results from mice studies do not always lead to effective treatments for human patients. However, the results from this study do provide compelling evidence to support the view that the combination of immunotherapy and strategies to kill tumor cells may eventually provide effective treatment for GBM and other brain tumors in humans. The combination therapy used in this study will be tested in clinical trials for the treatment of GBM in the near future.

Citation: Curtin JF, Liu N, Candolfi M, Xiong W, Assi H, et al. (2009) HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS Med 6(1): e1000010. doi:10.1371/journal.pmed.1000010
medicine.plosjournals.org/perl… journal.pmed.1000010

Source: Public Library of Science

Explore further: Recombinant peptide for transplantation of pancreatic islets in mice models of diabetes

add to favorites email to friend print save as pdf

Related Stories

3-D printers to make human body parts? It's happening

Feb 04, 2015

It sounds like something from a science fiction plot: So-called three-dimensional printers are being used to fashion prosthetic arms and hands, jaw bones, spinal-cord implants - and one day perhaps even living human body ...

Team enlarges brain samples, making them easier to image

Jan 15, 2015

Beginning with the invention of the first microscope in the late 1500s, scientists have been trying to peer into preserved cells and tissues with ever-greater magnification. The latest generation of so-called ...

Recommended for you

Novel nanoparticle therapy promotes wound healing

Mar 26, 2015

An experimental therapy developed by researchers at Albert Einstein College of Medicine of Yeshiva University cut in half the time it takes to heal wounds compared to no treatment at all. Details of the therapy, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.