Study in mice shows mechanisms behind immune responses to brain tumors

Jan 13, 2009

Findings from a study conducted in mice, published in the open access journal PLoS Medicine next week, provide new insights into how an effective immune response to brain tumors could potentially be brought about in humans.

Maria Castro, of the Cedars Sinai Medical Center in Los Angeles, and colleagues tested a new combined treatment strategy designed to encourage the immune system to respond and kill tumor cells from a particularly aggressive cancer called glioblastoma multiforme (GBM). GBM accounts for a fifth of all primary brain tumors and only one in twenty people survives for more than five years after being diagnosed with it. Therapies that have been tried with the goal of inducing an immune response against GBM have been unsuccessful in the past, partly because the brain contains few dendritic cells - immune cells which recognise tumor antigens and present them to other cells in the immune system.

In this study, after establishing brain tumors in mice, the researchers injected two harmless viruses into the tumors. One of these viruses successfully attracted dendritic cells into the brain; the other, in combination with a drug which was delivered systemically, killed tumor cells, causing the release of a protein, high-mobility-group box 1, from dying tumor cells. This ultimately allowed the immune system to identify and eliminate the tumor.

It should be stressed that results from mice studies do not always lead to effective treatments for human patients. However, the results from this study do provide compelling evidence to support the view that the combination of immunotherapy and strategies to kill tumor cells may eventually provide effective treatment for GBM and other brain tumors in humans. The combination therapy used in this study will be tested in clinical trials for the treatment of GBM in the near future.

Citation: Curtin JF, Liu N, Candolfi M, Xiong W, Assi H, et al. (2009) HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS Med 6(1): e1000010. doi:10.1371/journal.pmed.1000010
medicine.plosjournals.org/perl… journal.pmed.1000010

Source: Public Library of Science

Explore further: Paralyzed man recovers some function following transplantation of OECs and nerve bridge

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Team untangles the biological effects of blue light

11 hours ago

Blue light can both set the mood and set in motion important biological responses. Researchers at the University of Pennsylvania's School of Medicine and School of Arts and Sciences have teased apart the ...

Mouse model provides new insight in to preeclampsia

12 hours ago

Worldwide, preeclampsia is a leading cause of maternal deaths and preterm births. This serious pregnancy complication results in extremely high blood pressure and organ damage. The onset of preeclampsia is associated with ...

User comments : 0