New genetic study sheds light on serious childhood disease

Jan 09, 2009

Genetic variations that can predispose children to a serious disease that damages the heart have been identified in a genome-wide association study of Kawasaki Disease, published today in PLoS Genetics.

The disease, the cause of which is currently unknown, is a rare and severe childhood disorder that occurs mainly in young children. It is the most common cause of childhood acquired heart disease in developed countries.

The disease is more common in Japanese children and those of Asian descent, but it is found in all ethnic groups, affecting around 1 in 10,000 children of Caucasian descent.

The new study identifies variations in 31 genes which appear to increase a child's risk of developing Kawasaki Disease.

The findings will enable scientists to develop more effective ways of tackling the disease, by revealing new targets for treatment, say the researchers, from Imperial College London, the University of Western Australia, the Genome Institute of Singapore, Emma Childrens Hospital, Netherlands, and the University of San Diego California.

Some of the variations identified appear in genes that work together to control signalling between immune cells and heart cells. The researchers are planning to carry out further work to understand how these mutations contribute to the disease.

Epidemiological studies suggest that Kawasaki Disease is triggered by an as yet unidentified infection. It is currently treated using pooled antibodies from healthy donors. This treatment shortens the period of illness and most children recover after two to three weeks. It reduces but does not eliminate the risk of heart disease.

Professor Michael Levin, one of the authors of the study from the Department of Paediatrics at Imperial College London said: "Sadly, all the hospitals in the UK frequently see children with Kawasaki Disease. A child whose coronary arteries are damaged in early childhood faces a lifetime of uncertainty and risk, and we desperately need better treatments to prevent long term heart problems in those affected. We hope our new study will help us to reach this goal."

Dr Victoria Wright, another author of the study from the Department of Paediatrics at Imperial College London said: "Kawasaki Disease was identified less than fifty years ago so it is a relatively new disease. We still have a long way to go with this research but this is an important step in understanding the disease better."

For the new study, the international consortium combined their patients to perform a genome-wide association study in 119 Caucasian KD cases and 135 matched controls from Australia, Holland, USA and the UK. They looked at 250000 genetic variants in each patient and uncovered the most significant genes that appeared to be involved in Kawasaki Disease. They then replicated this in an independent cohort of a total of 893 KD cases plus population and family controls.

The researchers are now planning to analyse an Asian cohort of people with Kawasaki Disease, to see if their results can be replicated in this population.

Source: Imperial College London

Explore further: Flu season, early again, hitting hard in South and Midwest

add to favorites email to friend print save as pdf

Related Stories

A new technology to track down air pollutant effects

May 07, 2014

Did you ever see pollution level indicators displayed in big European cities? The EXPOSOMICS project is looking to make them obsolete. Not only will their technology determine the exact impact of pollutant exposure on our ...

How meningitis bacteria 'slip under the radar'

Sep 26, 2013

(Phys.org) —Scientists have discovered a natural temperature sensor in a type of bacteria that causes meningitis and blood poisoning. The sensor allows the bacteria to evade the body's immune response, ...

Stinky feet may lead to better malaria traps

Jun 04, 2013

For decades, health officials have battled malaria with insecticides, bed nets and drugs. Now, scientists say there might be a potent new tool to fight the deadly mosquito-borne disease: the stench of human ...

Hope for effective new malaria treatment

Nov 26, 2012

A research project carried out jointly by chemists at Imperial College London in the United Kingdom and biological scientists at the Institut Pasteur/Centre National de la Recherche Scientifique (CNRS) in ...

Amniotic fluid yields alternatives to embryonic stem cells

Jul 03, 2012

Stem cells found in amniotic fluid can be transformed into a more versatile state similar to embryonic stem cells, according to a study published today in the journal Molecular Therapy. Scientists from Imperial College London ...

Recommended for you

Evidence-based recs issued for systemic care in psoriasis

17 hours ago

(HealthDay)—For appropriately selected patients with psoriasis, combining biologics with other systemic treatments, including phototherapy, oral medications, or other biologic, may result in greater efficacy ...

Bacteria in caramel apples kills at least four in US

17 hours ago

A listeria outbreak believed to originate from commercially packaged caramel apples has killed at least four people in the United States and sickened 28 people since November, officials said Friday.

Steroid-based treatment may answer needs of pediatric EoE patients

17 hours ago

A new formulation of oral budesonide suspension, a steroid-based treatment, is safe and effective in treating pediatric patients with eosinophilic esophagitis (EoE), according to a new study in Clinical Gastroenterology and Hepatology, the official clinical practice journal ...

Discovery of genes that predispose a severe form of COPD

20 hours ago

A study by Ramcés Falfán-Valencia, researcher at the National Institute of Respiratory Diseases (INER), found that the mestizo Mexican population has a number of variations in certain genes that predispose ...

On the environmental trail of food pathogens

21 hours ago

Tracking one of the deadliest food contamination organisms through produce farms and natural environments alike, Cornell microbiologists are showing how to use big datasets to predict where the next outbreak could start.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.