Destroying amyloid proteins with lasers

Jan 07, 2009

Researchers have found that a technique used to visualize amyloid fibers in the laboratory might have the potential to destroy them in the clinic. The technique involves zapping the fluorescently-tagged fibers with a laser, which can inhibit their growth and degrade them.

This study, appearing in this week's JBC, may offer a non-drug alternative to treat amyloid-based disorders like Alzheimer, Parkinson, and Huntington diseases.

Yuji Goto and colleagues had been studying amyloids, dense tangles of protein, to better understand how they form. In an effort to view amyloid formation under a microscope in real-time, they added an amyloid specific dye called thioflavin T (ThT) to the tangles and then hit it with a laser beam to induce fluorescence. Surprisingly, they found that under the right conditions, the laser could actually stop fiber growth and even degrade the amyloids.

This video is not supported by your browser at this time.
This video shows real-time monitoring of the disappearance of preformed amyloid fibrils, intermittently irradiated with a laser beam (scale bar represents 10 um). Video: Journal of Biological Chemistry


Goto and colleagues believe the laser-excited ThT transfers some of its energy to nearby oxygen, resulting in active oxygen species that alters the surrounding protein fibers. These specific experiments focused on beta2-microglobulin, a major component of amyloids associated with dialysis-related amyloidosis (a condition that currently has no good treatment), though they believe a similar approach of light-induced decomposition should work for other types of protein amyloids.

Paper: "Destruction of Amyloid Fibrils of a β2-Microglobulin Fragment by Laser Beam Irradiation" by Daisaku Ozawa, Hisashi Yagi, Tadato Ban, Atsushi Kameda, Toru Kawakami, Hironobu Naiki, and Yuji Goto www.jbc.org/cgi/content/full/284/2/1009

Source: American Society for Biochemistry and Molecular Biology

Explore further: Battling superbugs with gene-editing system

add to favorites email to friend print save as pdf

Related Stories

Team improves solar-cell efficiency

8 hours ago

New light has been shed on solar power generation using devices made with polymers, thanks to a collaboration between scientists in the University of Chicago's chemistry department, the Institute for Molecular ...

Calif. teachers fund to boost clean energy bets

8 hours ago

The California State Teachers' Retirement System says it plans to increase its investments in clean energy and technology to $3.7 billion, from $1.4 billion, over the next five years.

Alibaba surges in Wall Street debut

8 hours ago

A buying frenzy sent Alibaba shares sharply higher Friday as the Chinese online giant made its historic Wall Street trading debut.

Dwindling wind may tip predator-prey balance

8 hours ago

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Recommended for you

Battling superbugs with gene-editing system

13 hours ago

In recent years, new strains of bacteria have emerged that resist even the most powerful antibiotics. Each year, these superbugs, including drug-resistant forms of tuberculosis and staphylococcus, infect ...

Dwindling wind may tip predator-prey balance

Sep 19, 2014

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Research helps steer mites from bees

Sep 19, 2014

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

User comments : 0