Argonne scientists reach milestone in accelerator upgrade project

Jan 06, 2009

Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have successfully stopped and then reaccelerated a stable ion through a newly constructed charge-breeder, bringing the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) Project closer to completion.

"We have this elegant balancing act we play," senior accelerator physicist Richard Pardo said. "If we go too slowly, the ions are reflected back and if we go too fast they go right through."

Beams of stable isotopes from elements across the entire periodic table have been used at ATLAS for research in nuclear physics for many years.

But as more protons or neutrons are added, the nuclei eventually become 'particle unstable,' emitting excess protons or neutrons. Neutrons, unlike protons and electrons, have no charge and therefore many more can be added to nuclei before this limit is reached.

The CARIBU project will extend the reach of ATLAS to include potentially hundreds of previously unstudied isotopes.

CARIBU will use Californium 252 to create neutron-rich heavy fission fragments at a rate of more than 1 billion per second. These fragments are thermalized in helium gas into a low-energy beam of singly-charged ions.

The charge-breeder, an electron Cyclotron Resonance (ECR) ion source, takes these beams, stops them in the plasma and strips them to higher charged states for reacceleration in the Argonne Tandem Linac Accelerator System (ATLAS).

"There are only a handful of charge-breeder ion sources in operation throughout the world and only one other has been used to deliver beams to an accelerator," senior scientific associate Richard Vondrasek said. "Our is the first to accomplish this goal in the United States."

The Cf 252 fission process creates hundreds of neutron-rich isotopes, but only one is used for any particular experiment. Argonne scientists stop these fragments in helium gas, cool them and form them into a precise beam of ions that can be processed by magnetic fields to select only the particular isotope of interest and move it to the charge-breeder.

Once the fragments enter the charge breeder, stripped of additional electrons and given the desired charge state, they are formed into a steady beam for acceleration through the main accelerator.

So far, scientists have only used stable ions through the charge breeder, but they should be ready to use the Cf 252 fragments in the next few months. CARIBU is set to be operational by the latter half of 2009.

Source: Argonne National Laboratory

Explore further: Engineers develop new methods to speed up simulations in computational grand challenge

add to favorites email to friend print save as pdf

Related Stories

New camera reveals how light breaks molecules apart

Nov 07, 2013

Way beyond pure illumination—from bright sunshine to intense x-rays at the National Synchrotron Light Source (NSLS)—light can pack a powerful punch down at the atomic scale. When light strikes organic ...

Detecting DNA in space

Jul 09, 2013

If there is life on Mars, it's not too farfetched to believe that such Martian species may share genetic roots with life on Earth.

Recommended for you

Fluctuation X-ray scattering

14 hours ago

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

17 hours ago

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

Behind the dogmas of good old hydrodynamics

19 hours ago

A new theory, which gives insights into the transport of liquid flowing along the surface under an applied electric field, was developed by a group of Russian scientists lead by Olga Vinogradova who is a ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.