Cassiopeia A Comes Alive Across Time and Space

Jan 06, 2009
Cassiopeia A 3-D Model: A Star From the Inside Out. Image: NASA/CXC/D.Berry

(PhysOrg.com) -- Two new efforts have taken a famous supernova remnant from the static to the dynamic. A new movie of data from NASA's Chandra X-ray Observatory shows changes in time never seen before in this type of object. A separate team will also release a dramatic three-dimensional visualization of the same remnant.

Nearly ten years ago, Chandra's "First Light" image of Cassiopeia A (Cas A) revealed previously unseen structures and detail. Now, after eight years of observation, scientists have been able to construct a movie that tracks the remnant's expansion and changes over time.

"With Chandra, we have watched Cas A over a relatively small amount of its life, but so far the show has been amazing," said Daniel Patnaude of the Smithsonian Astrophysical Observatory in Cambridge, Mass. "And, we can use this to learn more about the aftermath of the star's explosion."

A separate, but equally fascinating visualization featuring Cas A was presented, along with the Patnaude team's results, at a press conference at the American Astronomical Society meeting in Long Beach, Calif. Based on data from Chandra, NASA's Spitzer Space Telescope, and ground-based optical telescopes, Tracey DeLaney and her colleagues have created the first three-dimensional fly-through of a supernova remnant.

"We have always wanted to know how the pieces we see in two dimensions fit together with each other in real life," said DeLaney of the Massachusetts Institute of Technology. "Now we can see for ourselves with this 'hologram' of supernova debris."

This ground-breaking visualization of Cas A was made possible through a collaboration with the Astronomical Medicine project based at Harvard. The goal of this project is to bring together the best techniques from two very different fields, astronomy and medical imaging.

"Right now, we are focusing on improving three-dimensional visualization in both astronomy and medicine," said Harvard's Alyssa Goodman who heads the Astronomical Medicine project. "This project with Cas A is exactly what we have hoped would come out of it."

While these are stunning visuals, both the data movie from Patnaude and the 3-D model from DeLaney are, more importantly, rich resources for science. The two teams are trying to get a much more complete understanding of how this famous supernova explosion and its remnant work.

Patnaude and his team have measured the expansion velocity of features in Cas A from motions in the movie, and find it is slower than expected based on current theoretical models. Patnaude thinks the explanation for this mysterious loss of energy is cosmic ray acceleration.

Using estimates of the properties of the supernova explosion, including its energy and dynamics, Patnaude's group show that about 30% of the energy in this supernova has gone into accelerating cosmic rays, energetic particles that are generated, in part, by supernova remnants and constantly bombard the Earth's atmosphere. The flickering in the movie provides valuable new information about where the acceleration of these particles occurs.

Likewise, the new 3-D model of Cas A provides researchers with unique ability to study this remnant. With this new tool, Delaney and colleagues found two components to the explosion, a spherical component from the outer layers of the star and a flattened component from the inner layers of the star.

Notable features of the model are high-velocity plumes from this internal material that are shooting out from the explosion. Plumes, or jets, of silicon appear in the northeast and southwest, while plumes of iron are seen in the southeast and north. Astronomers had known about the plumes and jets before, but did not know that they all came out in a broad, disk-like structure.

The implication of this work is that astronomers who build models of supernova explosions must now consider that the outer layers of the star come off spherically, but the inner layers come out more disk like with high-velocity jets in multiple directions.

Cassiopeia A is the remains of a star thought to have exploded about 330 years ago, and is one of the youngest remnants in the Milky Way galaxy. The study of Cas A and remnants like it help astronomers better understand how the explosions that generate them seed interstellar gas with heavy elements, heat it with the energy of their radiation, and trigger shock waves from which new stars form.

Provided by Chandra X-ray Center

Explore further: Two families of comets found around nearby star Beta Pictoris

add to favorites email to friend print save as pdf

Related Stories

Plant communities produce greater yield than monocultures

19 minutes ago

Diverse plant communities are more successful and enable higher crop yields than pure monocultures, a European research team headed by ecologists from the University of Zurich has discovered. The scientists are convinced ...

NASA's RapidScat keeps a watchful eye on ocean storms

20 minutes ago

On Sept. 20, NASA launched a sequel to a classic Earth science mission that was a hit with researchers and forecasters of hurricanes and other tropical cyclones. Unlike many Hollywood remakes, this one promises ...

NASA Soil Moisture Mapper arrives at launch site

21 minutes ago

A NASA spacecraft designed to track Earth's water in one of its most important, but least recognized forms—soil moisture—now is at Vandenberg Air Force Base, California, to begin final preparations for ...

Recommended for you

New window on the early Universe

18 hours ago

Scientists at the Universities of Bonn and Cardiff see good times approaching for astrophysicists after hatching a new observational strategy to distill detailed information from galaxies at the edge of ...

Chandra's archives come to life

20 hours ago

Every year, NASA's Chandra X-ray Observatory looks at hundreds of objects throughout space to help expand our understanding of the Universe. Ultimately, these data are stored in the Chandra Data Archive, ...

New robotic telescope revolutionizes the study of stars

20 hours ago

In the last 8 months a fully robotic telescope in Tenerife has been carrying out high-precision observations of the motion of stellar surfaces. The telescope is the first in the SONG telescope network and ...

User comments : 0