Cell biologists identify new tumor suppressor for lung cancer

Jan 05, 2009

Cancer and cell biology experts at the University of Cincinnati (UC) have identified a new tumor suppressor that may help scientists develop more targeted drug therapies to combat lung cancer.

The study, led by Jorge Moscat, PhD, appears in the January 2009 issue of Molecular and Cellular Biology.

Proto-oncogenes are genes that play a role in normal cell growth (turnover of cells and tissue) but, when genetically modified, can cause the out-of-control cell division that leads to cancer. Previous research had established that Ras, a proto-oncogene, is abnormally expressed in up to 25 percent of human lung cancers; however, researchers did not understand the specific cellular events by which abnormal Ras expression leads to transformation.

UC researchers sought to define the interim steps that occur in Ras-induced tumor development to better understand the underlying biological mechanisms leading to cancer.

"These interim steps are critical because they help us determine how best to intervene and stop cancer growth along the way," explains Moscat, corresponding author of the study and chair of UC's cancer and cell biology department. "Right now, cancer therapy is delivered with a sledgehammer and it needs to be more like a scalpel so we avoid unnecessary harm to the body."

Using a genetically modified mouse model, the UC team found that animals who didn't express a certain gene (protein kinase C (PKC)-zeta) developed more Ras-induced lung cancer, suggesting a new role for the gene as a tumor suppressor.

"PKC-zeta would normally slow down Ras transformation and put the brakes on tumor development, but when PKC-zeta is missing or inactive as a result of genetic alterations, tumor growth actually accelerates," explains Moscat. "Until now, we did not know the specific chain of events that led to Ras-induced lung cancer. Our study fills in important missing information that will enhance our overall understanding of how lung cancer tumors grow and spread."

Source: University of Cincinnati

Explore further: NICE to recommend 'single dose' radiotherapy during breast surgery

add to favorites email to friend print save as pdf

Related Stories

Taking aim at metastatic lung tumors

Jun 14, 2010

A new study uses a sophisticated genomic analysis to unravel some of the complex cellular signals that drive the deadly invasive spread of lung cancer. The research, published by Cell Press in the June issue of the journal ...

Gene is linked to lung cancer development in never-smokers

Mar 22, 2010

A five-center collaborative study that scanned the genomes of thousands of "never smokers" diagnosed with lung cancer as well as healthy never smokers has found a gene they say could be responsible for a significant number ...

Tiny RNA has big impact on lung cancer tumors

Dec 07, 2009

Researchers from Yale University and Mirna Therapeutics, Inc., reversed the growth of lung tumors in mice using a naturally occurring tumor suppressor microRNA. The study reveals that a tiny bit of RNA may one day play a ...

Blind mole-rats are resistant to chemically induced cancers

Sep 03, 2013

Like naked mole-rats (Heterocephalus gaber), blind mole-rats (of the genus Spalax) live underground in low-oxygen environments, are long-lived and resistant to cancer. A new study demonstrates just how cancer-resistant Spalax are, and suggests that the adapt ...

Recommended for you

Study shows epigenetic changes can drive cancer

Jul 26, 2014

Cancer has long been thought to be primarily a genetic disease, but in recent decades scientists have come to believe that epigenetic changes – which don't change the DNA sequence but how it is 'read' – also play a role ...

User comments : 0