Evolution in action: Our antibodies take 'evolutionary leaps' to fight microbes

Jan 05, 2009

With cold and flu season in full swing, the fact that viruses and bacteria rapidly evolve is apparent with every sneeze, sniffle, and cough. A new report in the January 2009 issue of The FASEB Journal, explains for the first time how humans keep up with microbes by rearranging the genes that make antibodies to foreign invaders. This research fills a significant gap in our understanding of how the immune system helps us survive.

"We've known for a long time that our antibody-forming system adapts itself to every microbe we encounter," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal, "but what we didn't understand fully is exactly how this happens. Now that we know, we can begin to find ways to manipulate this process so illnesses can be prevented or made significantly less dangerous."

When the body encounters a foreign invader, like a virus or bacterium, it immediately begins to find a way to neutralize it by means of cellular or antibody-mediated defenses. Part of the process involves tailoring the genes that code for antibodies to specific viruses or bacteria. Researchers have known that this involves two types of genetic manipulation. One type changes a single gene at a time, and the other type changes multiple genes at the same time. In the report, scientists from Wayne State University in Detroit describe how multiple genes can be modified simultaneously to make the "evolutionary leap" necessary to stave off infection.

The basic setup of the experiment treated DNA responsible for making antibody molecules with an enzyme, called activation-induced deaminase, while the DNA was being copied by RNA polymerase. Like a scanner, RNA polymerase moves across the DNA to copy it. When this scanning process moved smoothly, there were either single mutations or no mutations. When the researchers made the RNA polymerase stall along the DNA (under certain conditions), it caused several mutations at once (cluster mutations) in the DNA, adapting our antibodies for a rapid and effective response to a new microbial invader.

"As the planet warms, infectious diseases may be one the biggest threats to human survival," Weissmann added. "Nowadays, mosquitoes, parasites and viruses cause diseases in the United States that were once isolated to warmer parts of the world. They evolve, and - a la Darwin - so does our immune system each time we meet a new microbial invader."

Article details: Chandrika Canugovi, Mala Samaranayake, and Ashok S. Bhagwat. Transcriptional pausing and stalling causes multiple clustered mutations by human activation-induced deaminase. FASEB J. 2009 23: 34-44. www.fasebj.org/cgi/content/abstract/23/1/34

Source: Federation of American Societies for Experimental Biology

Explore further: Declining catch rates in Caribbean green turtle fishery may be result of overfishing

add to favorites email to friend print save as pdf

Related Stories

The rapid evolution of cobra venom

Dec 03, 2013

A new study has provided the first comprehensive insight into how snake venom evolved into the sophisticated cocktail of different proteins it is today.

Bonding together to fight HIV

Nov 25, 2013

A collaborative team led by a Northeastern University professor may have altered the way we look at drug development for HIV by uncovering some unusual properties of a human protein called APOBEC3G (A3G).

Guarding the country against foreign animal diseases

Oct 25, 2013

A deadly animal virus is on the loose, treading through Russia and knocking on the doors of Eastern Europe and Asia. After its introduction into the Republic of Georgia and the Caucasus region in 2007 and ...

Influenza virus in wild birds in Norway

Sep 12, 2013

Ducks and gulls are the natural hosts of influenza A virus. Ragnhild Tønnessen's PhD research project has characterised influenza A viruses in gulls and ducks in Norway.

Recommended for you

Orchid named after UC Riverside researcher

2 hours ago

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

For resetting circadian rhythms, neural cooperation is key

3 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Fear of the cuckoo mafia

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Is Parkinson's an autoimmune disease?

The cause of neuronal death in Parkinson's disease is still unknown, but a new study proposes that neurons may be mistaken for foreign invaders and killed by the person's own immune system, similar to the ...