Bright lights, not-so-big pupils

Dec 31, 2008

A team of Johns Hopkins neuroscientists has worked out how some newly discovered light sensors in the eye detect light and communicate with the brain. The report appears online this week in Nature.

These light sensors are a small number of nerve cells in the retina that contain melanopsin molecules. Unlike conventional light-sensing cells in the retina—rods and cones—melanopsin-containing cells are not used for seeing images; instead, they monitor light levels to adjust the body's clock and control constriction of the pupils in the eye, among other functions.

"These melanopsin-containing cells are the only other known photoreceptor besides rods and cones in mammals, and the question is, 'How do they work?'" says Michael Do, Ph.D., a postdoctoral fellow in neuroscience at Hopkins. "We want to understand some fundamental information, like their sensitivity to light and their communication to the brain."

Using mice, the team first tested the light sensitivity of these cells by flashing light at the cells and recording the electrical current generated by one cell. They found that these cells are very insensitive to light, in contrast to rods, which are very sensitive and therefore enable us to see in dim light at night, for example. According to Do, the melanopsin-containing cells are less sensitive than cones, which are responsible for our vision in daylight.

"The next question was, What makes them so insensitive to light? Perhaps each photon they capture elicits a tiny electrical signal. Then there would have to be bright light—giving lots of captured photons—for a signal large enough to influence the brain. Another possibility is that these cells capture photons poorly," says Do.

To figure this out, the team flashed dim light at the cells. The light was so dim that, on average, only a single melanopsin molecule in each cell was activated by capturing a photon. They found that each activated melanopsin molecule triggered a large electrical signal. Moreover, to their surprise, the cell transmits this single-photon signal all the way to the brain.

Yet the large signal generated by these cells seemed incongruous with their need for such bright light. "We thought maybe they need so much light because each cell might also contain very few melanopsin molecules, decreasing their ability to capture photons," says King-Wai Yau, Ph.D., a professor of neuroscience at Hopkins. When they did the calculations, the research team found that melanopsin molecules are 5,000 times sparser than other light-capturing molecules used for image-forming vision.

"It appears that these cells capture very little light. However, once captured, the light is very effective in producing a signal large enough to go straight to the brain," says Yau. "The signal is also very slow, so it is not intended for detecting very brief changes in ambient light, but slow changes over time instead."

Curious about how these cells bear on behavior, the researchers examined pupil constriction in mice that had been genetically altered to be free of rod and cone function in order to focus on activity resulting from only melanopsin-containing cells. Flashing light at mice sitting in the dark, the team measured the degree of pupil constriction. They found that, on average, roughly 500 light-activated melanopsin molecules are enough to trigger a pupil response. "But it takes a lot of light to activate 500 molecules of melanopsin," says Yau. "Thus, the pupils close maximally only in bright light."

"In terms of controlling the pupils and the body clock, it makes sense to have a sensor that responds slowly and only to large light changes," says Yau. "You wouldn't want your body to think every cloud passing through the sky is nightfall."

"These melanopsin-containing cells signal light to many different parts of the brain to drive different behaviors, from setting the circadian clock to affecting mood and movement," says Do. "I want to know how these signals are processed and whether they are abnormal in disorders like seasonal affective disorder and jetlag—this is what we hope to tackle next."

On the Web:
neuroscience.jhu.edu/KingWaiYau.php
neuroscience.jhu.edu/
www.nature.com/nature/index.html

Source: Johns Hopkins Medical Institutions

Explore further: Key milestone for brown fat research with a ground-breaking MRI scan

add to favorites email to friend print save as pdf

Related Stories

A closer look into the TSLP cytokine structure

Apr 04, 2014

The PROXIMA 2 beamline at Synchrotron SOLEIL recently celebrated its first birthday. It's an occasion to reflect back upon a year of the collaborative work accomplished and its high scientific impact. In ...

Recommended for you

Proper stem cell function requires hydrogen sulfide

1 hour ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

Bionic ankle 'emulates nature'

7 hours ago

These days, Hugh Herr, an associate professor of media arts and sciences at MIT, gets about 100 emails daily from people across the world interested in his bionic limbs.

Firm targets 3D printing synthetic tissues, organs

8 hours ago

(Medical Xpress)—A University of Oxford spin-out, OxSyBio, will develop 3D printing techniques to produce tissue-like synthetic materials for wound healing and drug delivery. In the longer term the company ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

thales
2 / 5 (2) Dec 31, 2008
Hm. I wonder if they're sensitive to the same visual spectrum as the rods and cones or only a part of that spectrum.
Yogaman
2 / 5 (2) Dec 31, 2008
Chicken melanopsin absorbs maximally at 476-484nm according to http://tinyurl.com/7mxrbt

That's pretty bluish, a little toward green. (Look up "chromaticity".)

Fwiw, SAD/jetlag devices employ blue LEDs.

More news stories

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Spate of Mideast virus infections raises concerns

A recent spate of infections from a frequently deadly Middle East virus is raising new worries about efforts to contain the illness, with infectious disease experts urging greater vigilance in combatting ...

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...