Motor nerve targeting to limb muscles is controlled by ephrin proteins

Dec 24, 2008

Montréal, December 24, 2008 - A study from a team of researchers including Dr. Artur Kania, Director of the Neural Circuit Development Research Unit at the IRCM, and Dr. Dayana Krawchuk, postdoctoral fellow, shows how a family of proteins present in the developing limb control nerve targeting from the spinal cord to the muscles of the limb. This discovery, co-authored by scientists from Columbia University in New York City, is published on December 26, 2008 in the journal Neuron.

The nervous system is a highly precise and intricate nerve network whose major purpose is to analyze and respond to external stimuli through coordinated movement. Such precision stems from the accuracy of nerve connections formed between neurons and muscles. "To understand how this occurs," explains Dr. Kania, "we study a simple system in which nerves extend from the spinal cord to the limb to connect to either flexor muscles (i.e. biceps arm muscle) or extensor muscles (i.e. triceps arm muscle)." Previously, the researchers found that nerves connecting to extensor muscles were guided towards specific targets by a protein present in the developing limb (ephrin-A).

Using chick and mouse embryos as models, the team of scientists now discovered that nerves connecting to the antagonist muscle group, the flexor muscles, are guided by a closely-related protein family, also present in the developing limb (ephrin-B). Together, these studies present a complete picture of how both limb nerves correctly connect the nervous system to muscles. Furthermore, by studying the wiring of a relatively simple nerve connection, the team of scientists has discovered a molecular strategy that is very likely widely used in the nervous system to wire much more complex neural circuits, such as those required for learning, memory and coordinated movement.

Miswiring of the nervous system is thought to be a factor in disorders such as epilepsy and mental retardation. By studying the process of limb nerve development, this team of scientists contributes further to the development of new strategies for treatment of patients with a diseased and damaged nervous system. That is because knowing how nerves form is crucial in designing therapies that aim to rebuild damaged or diseased nerves.

"The study of the ephrin proteins should help us understand diseases such as autism, schizophrenia as well as a number of neurological disorders," says Dr. Rémi Quirion, a scientific director at the Canadian Institutes of Health Research (CIHR). "We are proud to support this important study and hope it will help to improve the lives of people with these health problems."

Source: Institut de recherches cliniques de Montreal

Explore further: The dopamine transporter: Researchers study a common link between addiction and neurological disease

add to favorites email to friend print save as pdf

Related Stories

How did we get four limbs? Because we have a belly

Jan 27, 2014

All of us backboned animals – at least the ones who also have jaws – have four fins or limbs, one pair in front and one pair behind. These have been modified dramatically in the course of evolution, into ...

Why men and women handle stress differently

Feb 27, 2013

Men and women handle stress differently. Most people probably would agree with that statement, but researchers at Michigan Technological University are pinpointing the physiological reasons behind what is, ...

Lessons from cockroaches could inform robotics (w/ video)

Feb 22, 2013

Running cockroaches start to recover from being shoved sideways before their dawdling nervous system kicks in to tell their legs what to do, researchers have found. These new insights on how biological systems stabilize could ...

Recommended for you

Scientists image a beating heart in 3D (w/ Video)

1 hour ago

Researchers of the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden report how they managed to capture detailed three-dimensional images of cardiac dynamics in zebrafish. The novel approach: ...

New device to monitor lung function in space

1 hour ago

A new method of collecting blood from the ear, currently part of an interactive exhibition at the Science Museum, could be used to monitor lung function in space. Less invasive, faster and more accurate than current methods, ...

Primate research center plays key role in HIV study in Nature

1 hour ago

In a study reported in Nature this month, Yerkes National Primate Research Center researchers were key in determining that treating SIV-infected rhesus macaques with type 1 interferon, a protein known to trigger antiviral respon ...

Three-people IVF debate process on the move in UK

3 hours ago

Takes two to make a child, correct? No. maybe. The use of sperm and eggs from three people to create babies moved a step closer in the UK, with Tuesday's events. What kind of egg-sperm distribution are we talking about? The ...

User comments : 0