Motor nerve targeting to limb muscles is controlled by ephrin proteins

Dec 24, 2008

Montréal, December 24, 2008 - A study from a team of researchers including Dr. Artur Kania, Director of the Neural Circuit Development Research Unit at the IRCM, and Dr. Dayana Krawchuk, postdoctoral fellow, shows how a family of proteins present in the developing limb control nerve targeting from the spinal cord to the muscles of the limb. This discovery, co-authored by scientists from Columbia University in New York City, is published on December 26, 2008 in the journal Neuron.

The nervous system is a highly precise and intricate nerve network whose major purpose is to analyze and respond to external stimuli through coordinated movement. Such precision stems from the accuracy of nerve connections formed between neurons and muscles. "To understand how this occurs," explains Dr. Kania, "we study a simple system in which nerves extend from the spinal cord to the limb to connect to either flexor muscles (i.e. biceps arm muscle) or extensor muscles (i.e. triceps arm muscle)." Previously, the researchers found that nerves connecting to extensor muscles were guided towards specific targets by a protein present in the developing limb (ephrin-A).

Using chick and mouse embryos as models, the team of scientists now discovered that nerves connecting to the antagonist muscle group, the flexor muscles, are guided by a closely-related protein family, also present in the developing limb (ephrin-B). Together, these studies present a complete picture of how both limb nerves correctly connect the nervous system to muscles. Furthermore, by studying the wiring of a relatively simple nerve connection, the team of scientists has discovered a molecular strategy that is very likely widely used in the nervous system to wire much more complex neural circuits, such as those required for learning, memory and coordinated movement.

Miswiring of the nervous system is thought to be a factor in disorders such as epilepsy and mental retardation. By studying the process of limb nerve development, this team of scientists contributes further to the development of new strategies for treatment of patients with a diseased and damaged nervous system. That is because knowing how nerves form is crucial in designing therapies that aim to rebuild damaged or diseased nerves.

"The study of the ephrin proteins should help us understand diseases such as autism, schizophrenia as well as a number of neurological disorders," says Dr. Rémi Quirion, a scientific director at the Canadian Institutes of Health Research (CIHR). "We are proud to support this important study and hope it will help to improve the lives of people with these health problems."

Source: Institut de recherches cliniques de Montreal

Explore further: New compounds protect nervous system from the structural damage of MS

add to favorites email to friend print save as pdf

Related Stories

Study shows troubling rise in use of animals in experiments

5 hours ago

Despite industry claims of reduced animal use as well as federal laws and policies aimed at reducing the use of animals, the number of animals used in leading U.S. laboratories increased a staggering 73 percent from 1997 ...

NY surveying banks on cyber security defenses

8 hours ago

(AP)—New York financial regulators are considering tougher cyber security requirements for banks to mandate more complex computer sign-ins and certifications from the contractors of their cyber defenses, the state's top ...

Life-saving train design is rarely used

9 hours ago

(AP)—Nearly a decade ago, the U.S. secretary of transportation stood at the site of a horrendous commuter train crash near downtown Los Angeles and called for the adoption of a new train car design that ...

Climate change may flatten famed surfing waves

9 hours ago

On a summer day in 1885, three Hawaiian princes surfed at the mouth of the San Lorenzo River on crudely constructed boards made from coastal redwoods, bringing the sport to the North American mainland.

Recommended for you

Mystery of the reverse-wired eyeball solved

21 hours ago

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

21 hours ago

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.