Psychologist identifies area of brain key to choosing words

Dec 24, 2008

New research by a Rice University psychologist clearly identifies the parts of the brain involved in the process of choosing appropriate words during speech.

The study, published in the current issue of the Proceedings of the National Academy of Sciences, could help researchers better understand the speech problems that stroke patients experience.

When speaking, a person must select one word from a competing set of words. For example, if the speaker wants to mention a specific animal, he has to single out "dog" from "cat," "horse" and other possibilities. If he wants to describe someone's temperament, he has to choose whether "happy," "sad," "ecstatic" or some other adjective is more appropriate.

Tatiana Schnur, assistant professor of psychology at Rice, wanted to determine whether one particular part of the brain, the left inferior frontal gyrus (LIFG), is necessary for resolving the competition for choosing the correct word.

She and her colleagues compared brain images from 16 healthy volunteers and 12 volunteers who suffer from aphasia, an acquired language disorder as a result of stroke. People who have aphasia frequently experience difficulty with speech.

The researchers found that while two parts of the brain, the LIFG and the left temporal cortex, respond to increased conflict among words competing for selection during speech, only the LIFG is necessary to resolve the competition for successful word production. The LIFG includes Broca's area, named after the 19th-century French scientist Paul Pierre Broca. It is responsible for aspects of speech production, language processing and language comprehension.

The study covered two experiments where people name a series of images and conflict between words increases as more images are named. In the first experiment, healthy speakers' brain activations were measured using functional magnetic resonance imaging. The second experiment mapped performance deficits to lesion locations in participants with aphasia.

By looking at direct parallels between the healthy and aphasic volunteers, Schnur and colleagues coupled location in the brain with specific speech processes. The research found that the ability of aphasic speakers "to resolve competition that arises in the course of language processing appears to depend on the integrity of the LIFG." This result could open an exciting line of research, as damage to this mechanism may explain the hesitant, nonfluent speech exhibited by those described as Broca's aphasics.

The study, "Localizing Interference During Naming: Convergent Neuroimaging and Neuropsychological Evidence for the Function of Broca's Area," was funded by the National Institutes of Health.

Source: Rice University

Explore further: Firm targets 3D printing synthetic tissues, organs

add to favorites email to friend print save as pdf

Related Stories

Social robotics: Beyond the uncanny valley

Dec 29, 2011

(PhysOrg.com) -- From science fiction and academia through assembly lines and telemedicine, robots have become both conceptually and physically ubiquitous. Technologically, robotics technology has advanced ...

Measured -- The time it takes us to find the words we need

Nov 23, 2009

(PhysOrg.com) -- The time it takes for our brains to search for and retrieve the word we want to say has been measured for the first time. The discovery is reported in a paper published in the Proceedings of the National Ac ...

Recommended for you

Firm targets 3D printing synthetic tissues, organs

1 hour ago

(Medical Xpress)—A University of Oxford spin-out, OxSyBio, will develop 3D printing techniques to produce tissue-like synthetic materials for wound healing and drug delivery. In the longer term the company ...

Gate for bacterial toxins found

16 hours ago

Prof. Dr. Dr. Klaus Aktories and Dr. Panagiotis Papatheodorou from the Institute of Experimental and Clinical Pharmacology and Toxicology of the University of Freiburg have discovered the receptor responsible ...

User comments : 0

More news stories

Firm targets 3D printing synthetic tissues, organs

(Medical Xpress)—A University of Oxford spin-out, OxSyBio, will develop 3D printing techniques to produce tissue-like synthetic materials for wound healing and drug delivery. In the longer term the company ...

Survival hope for melanoma patients thanks to new vaccine

(Medical Xpress)—University of Adelaide researchers have discovered that a new trial vaccine offers the most promising treatment to date for melanoma that has spread, with increased patient survival rates and improved ability ...

Naps help infants learn

Sleep is essential in helping young children apply what they learn, according to new research by Rebecca Gómez, associate professor in the UA Department of Psychology. In this Q&A, she talks about her new ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...