Bioreactors might solve blood-platelet supply problems

Dec 23, 2008

It might be possible to grow human blood platelets in the laboratory for transfusion, according to a new study at The Ohio State University Medical Center.

The findings, published in the January 1, 2009 issue of the journal Experimental Hematology, might one day enable blood banks to grow platelets continuously and in quantities that can ease the chronically tight supply of these critical blood components.

About 13 million platelet concentrates are collected annually in the United States at a cost of about $1 billion. They are needed by people who lack platelets or whose platelets function improperly, such as certain cancer chemotherapy patients, bone marrow transplant patients, trauma patients given massive blood transfusions and people with aplastic anemia.

The concentrates from volunteer donors are expensive to make, require 10 or more tests for pathogens and have a shelf life of only five days. As a result, 20 to 40 percent of platelet concentrates are discarded. Red blood cells, by contrast, last 56 days.

The short shelf life means platelets cannot easily be shipped from an area of surplus to one of scarcity, and hospitals occasionally experience shortages that require surgeries to be postponed.

Attempts by others to grow platelets have produced only small numbers for a short time, says principal investigator, Larry C. Lasky, associate professor of pathology at Ohio State and a specialist in transfusion medicine and blood banking.

"We were pleasantly surprised to achieve continuous production for a month," Lasky says. "It is easy to imagine a series of these chambers producing platelets. It would be ideal for clinical use and possibly solve the short shelf-life problem. Using good manufacturing practices would prevent bacterial contamination."

Currently, platelets are collected either from donated blood or by apheresis. Apheresis is an expensive and time-consuming process that involves taking blood from one arm, passing it through a machine that isolates the platelets, and then returning it to the other arm. The method yields four to six platelet units per donor.

For this study, Lasky and his colleagues isolated hematopoietic stem cells, which produce blood cells, from blood taken from umbilical cords following normal, full-term deliveries. The stem cells were grown to greater numbers, then added to the bioreactors – chambers with several layers for gas and growth-media control. Control cells were grown in culture flasks. Other attempts to grow platelets have usually used culture flasks or similar two-dimensional systems.

After a few days of growth, a solution of growth factors was added to both groups to stimulate the cells to form large, bone-marrow cells called megakaryocytes, which shed bits of themselves as platelets.

The three-dimensional bioreactor produced up to 1.2 million platelets per day, with production continuing for more than 32 days, while the two-dimensional system generated a maximum of about 350,000 platelets per day over a ten-day period.

Lasky and his colleagues are now modifying the process to increase the yield of platelets.

Source: Ohio State University Medical Center

Explore further: Secret of tetanus toxicity offers new way to treat motor neuron disease

add to favorites email to friend print save as pdf

Related Stories

Shape of things to come in platelet mimicry

Nov 05, 2014

Artificial platelet mimics developed by a research team from Case Western Reserve University and University of California, Santa Barbara, are able to halt bleeding in mouse models 65 percent faster than nature ...

Architecture of a lipid transport protein revealed

Nov 13, 2014

For the first time, the complex architecture of a protein that controls the transport of lipids between the two layers of a cell membrane has been described. With this structure, Biochemists from the University ...

Researchers gain fuller picture of cell protein reactions

Nov 21, 2013

Over the past decade, advances in genetic mapping tools have provided great insight into how DNA influences cell behavior. But genetics is only half the equation; much of cells' behavior is the result of post-transcriptional ...

Researchers develop synthetic platelets

May 30, 2012

Synthetic platelets have been developed by UC Santa Barbara researchers, in collaboration with researchers at Scripps Research Institute and Sanford-Burnham Institute in La Jolla, Calif. Their findings are ...

Math predicts size of clot-forming cells

May 25, 2012

UC Davis mathematicians have helped biologists figure out why platelets, the cells that form blood clots, are the size and shape that they are. Because platelets are important both for healing wounds and in strokes and other ...

Recommended for you

Stroke damage mechanism identified

13 hours ago

Researchers have discovered a mechanism linked to the brain damage often suffered by stroke victims—and are now searching for drugs to block it.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.