Shape changes in aroma-producing molecules determine the fragrances we detect

Dec 22, 2008

Shakespeare wrote "a rose by any other name would smell as sweet." But would it if the molecules that generate its fragrance were to change their shape?

That's what Dr. Kevin Ryan, Assistant Professor of Chemistry at The City College of New York (CCNY) and collaborators in the laboratory of Dr. Stuart Firestein, Professor of Biology at Columbia University, set out to investigate. Their findings, reported today in the journal "Chemistry & Biology," shed new insight into how our sense of smell works and have potential applications in the design of flavors and fragrances.

When odor-producing molecules, known as odorants, pass through the nose, they trigger intracellular changes in a subset of the approximately 400 different varieties olfactory sensory neurons (OSN) housed in the nose's internal membrane tissue, Professor Ryan explained. The unique reaction pattern produced, known as the olfactory code, is sent as a signal to the brain, which leads to perception of odors.

Professor Ryan and his team wanted to learn how these receptor cells respond when odorants change their shape. They studied the odorant octanal, an eight-carbon aldehyde that occurs in many flowers and citrus fruits. Octanal is a structurally flexible molecule that can adapt to many different shapes by rotating its chemical bonds.

The researchers designed and synthesized eight-carbon aldehydes that resembled octanal, but had their carbon chains locked by adding one additional bond. These molecules were tested on genetically engineered OSNs known to respond to octanal. This work was done in Professor Firestein's laboratory at Columbia.

The aldehyde molecules that could stretch to their greatest length triggered strong activity in the OSNs. However, those molecules whose carbon chains were constrained into a U shape blocked the receptor and left the cell unable to sense octanal.

"Conformationally constrained odorants were more selective in the number of OSNs they activated," Professor Ryan noted. "The results indicate that these odorant molecules might be able to alter fragrance mixture odors in two ways: by muting the activity of flexible odorants present in a mixture and by activating a smaller subset of OSNs than chemically related flexible odorants. This would produce a different olfactory code signature."

Olfactory receptors belong to the G-protein coupled receptor (GPCR) class of proteins, a family of molecules found in cell membranes throughout the body. Professor Ryan pointed out that half of all commercial pharmaceuticals work by interaction with proteins within this family. Thus, the findings could also have applications to GPCR drug design, as well.

Source: City College of New York

Explore further: Plug n' Play protein crystals

add to favorites email to friend print save as pdf

Related Stories

Greenhouse gas chemistry

Nov 30, 2010

If fossil fuels burn completely, the end products are carbon dioxide and water. Today the carbon dioxide is a waste product, one that goes into the air -- adding to global warming; or the oceans -- acidifying ...

In plants, small changes make big impact

Oct 07, 2010

(PhysOrg.com) -- You can’t see them or feel them, but right now countless biochemical interactions in your body affect your life in countless ways. These interactions are important because if they go ...

Imaging a catalyst one atom at a time

Nov 09, 2009

(PhysOrg.com) -- The catalytic processes that facilitate the production of many chemicals and fuels could become much more environmentally friendly thanks to a breakthrough achieved by researchers from Lehigh ...

Recommended for you

Plug n' Play protein crystals

1 hour ago

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

Protein glue shows potential for use with biomaterials

Aug 28, 2014

Researchers at the University of Milan in Italy have shown that a synthetic protein called AGMA1 has the potential to promote the adhesion of brain cells in a laboratory setting. This could prove helpful ...

User comments : 0