New 'smart' materials for the brain

Dec 21, 2008

Research done by scientists in Italy and Switzerland has shown that carbon nanotubes may be the ideal "smart" brain material. Their results, published December 21 in the advance online edition of the journal Nature Nanotechnology, are a promising step forward in the search to find ways to "bypass" faulty brain wiring.

The research shows that carbon nanotubes, which, like neurons, are highly electrically conductive, form extremely tight contacts with neuronal cell membranes. Unlike the metal electrodes that are currently used in research and clinical applications, the nanotubes can create shortcuts between the distal and proximal compartments of the neuron, resulting in enhanced neuronal excitability.

The study was conducted in the Laboratory of Neural Microcircuitry at EPFL in Switzerland and led by Michel Giugliano (now an assistant professor at the University of Antwerp) and University of Trieste professor Laura Ballerini. "This result is extremely relevant for the emerging field of neuro-engineering and neuroprosthetics," explains Giugliano, who hypothesizes that the nanotubes could be used as a new building block of novel "electrical bypass" systems for treating traumatic injury of the central nervous system. Carbon nano-electrodes could also be used to replace metal parts in clinical applications such as deep brain stimulation for the treatment of Parkinson's disease or severe depression. And they show promise as a whole new class of "smart" materials for use in a wide range of potential neuroprosthetic applications.

Henry Markram, head of the Laboratory of Neural Microcircuitry and an author on the paper, adds: "There are three fundamental obstacles to developing reliable neuroprosthetics: 1) stable interfacing of electromechanical devices with neural tissue, 2) understanding how to stimulate the neural tissue, and 3) understanding what signals to record from the neurons in order for the device to make an automatic and appropriate decision to stimulate. The new carbon nanotube-based interface technology discovered together with state of the art simulations of brain-machine interfaces is the key to developing all types of neuroprosthetics -- sight, sound, smell, motion, vetoing epileptic attacks, spinal bypasses, as well as repairing and even enhancing cognitive functions."

Source: Ecole Polytechnique Fédérale de Lausanne

Explore further: Making graphene in your kitchen

add to favorites email to friend print save as pdf

Related Stories

Fresnel lenses: High contrast and efficient focusing

Oct 05, 2012

The first Fresnel lens was installed in 1823 in the Cordouan lighthouse, where its beam was visible for 32 km. Since then, this lens design has been used in lighthouses, traffic lights, automobile headlights, ...

Silicon whiskers detect neural responses

Oct 27, 2010

Dr. Kawano and colleagues successfully demonstrate the neural recording capability of micrometer sized VLS-silicon wires—'Toyohashi Probe' using the retina of a fish (see Fig.1 and Animation). ...

Recommended for you

Making graphene in your kitchen

16 hours ago

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Atom probe assisted dating of oldest piece of earth

(Phys.org) —It's a scientific axiom: big claims require extra-solid evidence. So there were skeptics in 2001 when University of Wisconsin-Madison geoscience professor John Valley dated an ancient crystal ...