Groundbreaking, inexpensive, pocket-sized ultrasound device can help treat cancer, relieve arthritis

Dec 19, 2008 By Anne Ju
Ultrasound waves created by one of Lewis' devices leave the transducer, submerged under water, causing the water to bubble, spray and turn into steam. Image: Robert Barker/University Photography

(PhysOrg.com) -- A prototype of a therapeutic ultrasound device, developed by a Cornell graduate student, fits in the palm of a hand, is battery-powered and packs enough punch to stabilize a gunshot wound or deliver drugs to brain cancer patients. It is wired to a ceramic probe, called a transducer, and it creates sound waves so strong they instantly cause water to bubble, spray and turn into steam.

Tinkering in his Olin Hall lab, George K. Lewis, a third-year Ph.D. student in biomedical engineering and a National Science Foundation fellow, creates ultrasound devices that are smaller, more powerful and many times less expensive than today's models. Devices today can weigh 30 pounds and cost $20,000; his is pocket-sized and built with $100. He envisions a world where therapeutic ultrasound machines are found in every hospital and medical research lab.

"New research and applications are going to spin out, now that these systems will be so cheap, affordable and portable in nature," Lewis said.

The development of one of his portable devices is detailed in the journal Review of Scientific Instruments (79-114302), published online Nov. 11. Lewis, whose paper is co-authored by his adviser, William L. Olbricht, Cornell professor of chemical and biomolecular engineering, also presented his research in a talk at the November meeting of the Acoustical Society of America.

Ultrasound is commonly used as a nondestructive imaging technique in medical settings. Sound waves, inaudible to humans, can generate images through soft tissue, allowing, for instance, a pregnant woman to view images of her baby. But the higher-energy ultrasound that Lewis works with can treat such conditions as prostate tumors or kidney stones by breaking them up. His devices also can relieve arthritis pressure and even help treat brain cancer by pushing drugs quickly through the brain following surgery.

Lewis suggests that his technology could lead to such innovations as cell phone-size devices that military medics could carry to cauterize bleeding wounds, or dental machines to enable the body to instantly absorb locally injected anesthetic.

Lewis miniaturized the ultrasound device by increasing its efficiency. Traditional devices apply 500-volt signals across a transducer to convert the voltage to sound waves, but in the process, about half the energy is lost. In the laboratory, Lewis has devised a way to transfer 95 percent of the source energy to the transducer.

His new devices are currently being tested in a clinical setting at Weill Cornell Medical College. Under the direction of Jason Spector, M.D, director of Weill Cornell's Laboratory for Bioregenerative Medicine and Surgery and assistant professor of plastic surgery, Peter Henderson, M.D., the lab's chief research fellow, is using one of the devices in experiments that aim to minimize injury that occurs when tissues do not receive adequate blood flow.

Their lab is performing tests in animals to determine whether low doses of the chemical hydrogen sulfide, known to be toxic at high doses, might be able to minimize such injury by slowing cellular metabolism.

Doctors are hopeful that the ultrasound from Lewis' portable device will enable hydrogen sulfide to be targeted to specific parts of the body, allowing doctors to use less of it, and cutting down on toxicity risks, Henderson explained.

The medical doors that Lewis' device may one day open are groundbreaking, Henderson said.

"People are realizing that when harnessed appropriately, you can use ultrasound to treat things as opposed to just diagnose them," Henderson said. "It's a wide-open field right now, and George's device is going to play a huge role in catalyzing the discovery of new and better therapeutic applications."

Provided by Cornell University

Explore further: Missing protein restored in patients with muscular dystrophy

add to favorites email to friend print save as pdf

Related Stories

Charging with ultrasound: uBeam has functional prototype

Aug 08, 2014

uBeam on Wednesday announced its first "fully functional prototype," ready to build for consumers. This is a company that on its Careers page tells visitors, "We're on a mission to untether the world," and ...

Predicting and preventing costly breakdowns in machines

Aug 06, 2014

Everything's green in Duisburg. Well, almost. That's because many green dots and only one red one can be seen on a huge display that shows the city's street network. Every dot represents a traffic light. ...

Bottling up sound waves

Aug 04, 2014

There's a new wave of sound on the horizon carrying with it a broad scope of tantalizing potential applications, including advanced ultrasonic imaging and therapy, acoustic cloaking, and levitation and particle ...

Recommended for you

Student seeks to improve pneumonia vaccines

19 hours ago

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

Seabed solution for cold sores

20 hours ago

The blue blood of abalone, a seabed delicacy could be used to combat common cold sores and related herpes virus following breakthrough research at the University of Sydney.

Better living through mitochondrial derived vesicles

Aug 19, 2014

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

Aug 19, 2014

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

tpb
3 / 5 (2) Dec 19, 2008
Hmm! looks alot like the ultrasonic tranducer in a ultrasonic humidifier.
Also sounds like he did an inductive matching network to cancel out the large parasitic parallel capacitance of the transducer.
Nothing new here.
canuckit
1 / 5 (1) Dec 20, 2008
Unfortunately that's no news.
I saw the same effects using ultrasonic transducers in
various experiments at a university lab 30 years ago!
jonnyboy
1 / 5 (1) Dec 20, 2008
Hmm! looks alot like the ultrasonic tranducer in a ultrasonic humidifier.
Also sounds like he did an inductive matching network to cancel out the large parasitic parallel capacitance of the transducer.
Nothing new here
Unfortunately that's no news.
I saw the same effects using ultrasonic transducers in
various experiments at a university lab 30 years ago!

Hmm! looks alot like the ultrasonic tranducer in a ultrasonic humidifier.
Also sounds like he did an inductive matching network to cancel out the large parasitic parallel capacitance of the transducer.
Nothing new here.


then why didn't either of you two geniuses minituarize it, reduce the cost factor by 200 and bring the product to pre-market testing?

hmmmmmmmmmmmmmm?

stfu haters
canuckit
not rated yet Dec 21, 2008
I got a patent and my employer owned the rights
of the invention. Several publications from different countries were derived from this work and different applications were possible.