First experimental evidence for speedy adaptation to pesticides by worm species

Dec 18, 2008

Scientists at the Instituto Gulbenkian de Ciencia (IGC) and the Faculty of Science of the University of Lisbon, in Portugal, have shown that populations of the worm Caenhorabditis elegans become resistance to pesticides in 20 generations, that is, in only 80 days.

These findings, published last month in the journal PLoS ONE open the way for future research into improved use of pesticides and antibiotics in pest and parasite control.

Patrícia Lopes and co-workers followed 20 generations of the worm C. elegans in the presence of Levamisole, a widely-used pesticide that acts on the nervous system, is lethal, but also affects fecundity and mobility, when present at lower doses. They found that Levamisole markedly reduced fecundity, survival and the frequency of males. Indeed, these almost disappeared in the population: from an initial frequency of 30%, they reached 0% by the 10th generation. The researchers showed that this drastic decrease in male frequency was not due to males being more susceptible to the pesticide than females. Rather, the pesticide affected the worms' mobility and, consequently, their ability to find a mate.

However, the populations of worms were able to adapt to the new Levamisole environment, so that by the 10th generation, survival and fecundity had recovered, and the frequency of males increased again by the 20th generation. The ability to lose males in a population and still reproduce is only possible because C. elegans is a hermaphrodite species, that is, within a population, some worms are both male and female and can thus breed on their own, a process called 'selfing'.

The researchers then placed the adapted worms into the original, pesticide-free environment and found that the worms survived perfectly. Scientists say that there were no adaptation costs to the population. Says Elio Sucena, group leader at the IGC and co-author of this study, 'These findings have implications for managing the application of pesticides: if we had found that the survival of adapted worms in the original environment was impaired too, this would have meant that, by maintaining areas where the pesticide is not spread, resistance to the pesticide could be controlled, and the efficacy of the pesticide increased'.

Sara Magalhães, group leader at the University of Lisbon, points out that 'As a result of the widespread use of pesticides and antibiotics, resistance to these chemicals has developed in many species. Our ability to manage this resistance entails being able to dissect the genetic changes underlying the acquisition of resistance. Ourapproach, using experimental evolution, allows us to manipulate several factors, such as population size, environmental stability and genetic background in our efforts to tackle and understand pesticide resistance, not only of C. elegans but also other pests and parasites'.

Source: Instituto Gulbenkian de Ciencia

Explore further: Sheep flock to Eiffel Tower as French farmers cry wolf

add to favorites email to friend print save as pdf

Related Stories

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Pest management – it isn't just about the killing

Nov 05, 2013

To most people pest management brings up images of rats, cockroaches and chemical spraying. Poisoning vermin and insect is only one minor, albeit important, aspect of pest management. Few people know about ...

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

2 hours ago

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

Bitter food but good medicine from cucumber genetics

2 hours ago

High-tech genomics and traditional Chinese medicine come together as researchers identify the genes responsible for the intense bitter taste of wild cucumbers. Taming this bitterness made cucumber, pumpkin ...

New button mushroom varieties need better protection

6 hours ago

A working group has recently been formed to work on a better protection of button mushroom varieties. It's activities are firstly directed to generate consensus among the spawn/breeding companies to consider ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.