Toshiba, IBM, AMD Develop World's Smallest FinFET SRAM Cell with High-k/Metal Gate

Dec 17, 2008

Toshiba, IBM, and AMD today announced that they have together developed a Static Random Access Memory (SRAM) cell that has an area of only 0.128 square micrometers (μm2), the world’s smallest functional SRAM cell that makes use of fin-shaped Field Effect Transistors (FinFETs).

The cell, developed with a high-k/metal gate (HKMG) material, offers advantages over planar-FET cells for future technology generations. SRAM cells are circuit components in most systems-level, large-scale integrated circuits such as microprocessors, and smaller SRAM cells can help provide smaller, faster processors that consume less power. The technology was announced on December 16 in a technical paper presented at the 2008 International Electron Devices Meeting in San Francisco, California.

To reduce the transistor size when SRAM cells are created using conventional planar transistors, IC manufacturers generally adjust properties by doping more impurities into the device area. However, this adjustment creates undesirable variability and deteriorates the SRAM stability. This issue is becoming critical, especially at the 22nm technology node and beyond. The use of FinFETs -- vertical transistors with fin-shaped undoped silicon channels -- is an alternative approach to allow SRAM cell size reduction with less characteristic variation.

Researchers from the three companies fabricated a highly scaled FinFET SRAM cell using HKMG. It is the smallest nonplanar-FET SRAM cell yet achieved: at 0.128μm2, the integrated cell is more than 50 percent smaller than the 0.274μm2 nonplanar-FET cell previously reported. To achieve this goal, the team optimized the processes, especially for depositing and removing materials, including HKMG from vertical surfaces of the non-planar FinFET structure.

The researchers also investigated the stochastic variation of FinFET properties within the highly scaled SRAM cells and simulated SRAM cell variations at an even smaller cell size. They verified that FinFETs without channel doping improved transistor characteristic variability by more than 28 percent. In simulations of SRAM cells of 0.063μm2 area, equivalent to or beyond the cell scaling for the 22nm node, the results confirmed that the FinFET SRAM cell is expected to offer a significant advantage in stable operation compared to a planar-FET SRAM cell at this generation.

By successfully fabricating highly scaled FinFET SRAM cells with HKMG, the companies have positioned FinFETs as an attractive transistor structure for SRAMs in the 22nm node and beyond. The new technology is a step forward to more powerful practical devices.

Provided by IBM

Explore further: 'Smart material' chin strap harvests energy from chewing

add to favorites email to friend print save as pdf

Related Stories

Researchers Build World's Smallest SRAM Memory Cell

Aug 18, 2008

(PhysOrg.com) -- IBM and its development partners -- AMD, Freescale, STMicroelectronics, Toshiba and the College of Nanoscale Science and Engineering (CNSE) -- today announced the first working static random access memory ...

IBM Unveils World's Smallest SRAM Memory Cell

Dec 06, 2004

IBM today announced it has built a critical component for a high-speed computer memory that is about ten times smaller than those currently available, potentially enabling a major system performance boost for critical business ...

Recommended for you

Tokyo Game Show: On the hunt for the next Minecraft

11 hours ago

The staggering $2.5 billion that Microsoft has just shelled out for Minecraft and its quirky graphics will be foremost in developers' minds at the Tokyo Game Show this week, where simple yet immersive games ...

A Closer Look: Your (online) life after death

11 hours ago

Sure, you have a lot to do today—laundry, bills, dinner—but it's never too early to start planning for your digital afterlife, the fate of your numerous online accounts once you shed this mortal coil.

Web filter lifts block on gay sites

11 hours ago

A popular online safe-search filter is ending its practice of blocking links to mainstream gay and lesbian advocacy groups for users hoping to avoid obscene sites.

User comments : 0