'Seeing' the quantum world

Dec 17, 2008

Quantum physics is both mysterious and difficult to grasp. Barry Sanders, director of the University of Calgary's Institute for Quantum Information Science, is hoping to change that.

Sanders, who is also the iCORE Chair of Quantum Information Science, has produced a four-minute animated movie with a team of animators and scientists. The film is intended for funding agencies, the public, and interdisciplinary teams building quantum computers, so they can see how a quantum computer would work and its underlying science.

For the first time, a detailed description on the making of Sanders' animation—Solid State Quantum Computer in Silicon—was published this month in the New Journal of Physics. This issue is devoted to the leading uses of visualization in astrophysics, biophysics, geophysics, medical physics and quantum physics and Sanders is one the guest editors for this issue.

"The goal of our animated movie about the quantum computer is to convey to a non-expert audience the nature of quantum computation: its power, how it would work, what it would look like," says Sanders, who also has an article published in the December issue of Physics World on the making of his four-minute animation.

"The animation incorporates state-of-the-art techniques to show the science and the technology in the most accurate and exciting way possible while being true to the underlying principles of quantum computing," says Sanders.

The animated movie was completed last year but the clips have not been publicly distributed before now.

Quantum computers harness the power of atoms and molecules and have the potential to calculate significantly faster than any existing computer could. Some hard computational problems that can't be solved ever by foreseeable computers become easily solved on quantum computers, which could make today's secure communication obsolete. Basic quantum computers that can perform certain calculations exist; but a practical quantum computer is still years away.

"There is a history of simple visualization over the last century to convey quantum concepts," says Sanders. He notes that Erwin Schrödinger introduced his eponymous cat, which is left in a tragic state of being in a superposition of life and death, an illustration of the strangeness of quantum theory. And the uncertainty principle associated with Werner Heisenberg and his fictional gamma ray microscope, has found its way into common English parlance.

"The imagery of the early days of quantum mechanics played a crucial role in understanding and accepting quantum theory. Our work takes this imagery a quantum leap forward by using the state-of-the-art animation techniques to explain clearly and quickly the nature of quantum computing which is, by its very nature, counterintuitive."

Source: University of Calgary

Explore further: The unifying framework of symmetry reveals properties of a broad range of physical systems

add to favorites email to friend print save as pdf

Related Stories

Tiny graphene drum could form future quantum memory

1 hour ago

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

Calculating conditions at the birth of the universe

Aug 26, 2014

(Phys.org) —Using a calculation originally proposed seven years ago to be performed on a petaflop computer, Lawrence Livermore researchers computed conditions that simulate the birth of the universe.

Laser pulse turns glass into a metal

Aug 26, 2014

For tiny fractions of a second, quartz glass can take on metallic properties, when it is illuminated be a laser pulse. This has been shown by calculations at the Vienna University of Technology. The effect ...

Recommended for you

What time is it in the universe?

20 hours ago

Flavor Flav knows what time it is. At least he does for Flavor Flav. Even with all his moving and accelerating, with the planet, the solar system, getting on planes, taking elevators, and perhaps even some ...

Watching the structure of glass under pressure

Aug 28, 2014

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

Aug 28, 2014

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

Aug 28, 2014

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

matelot
3.3 / 5 (3) Dec 17, 2008
Is the video not available online? What a complete waste.
itistoday
5 / 5 (2) Dec 17, 2008
Found what could be the video being referred to here:

http://www.eureka...m=127696

Warning: it's not very useful without someone explaining what's going on...
earls
5 / 5 (2) Dec 17, 2008
The rest of the videos:

http://www.iop.or.../125005/
OregonWind
4 / 5 (1) Dec 17, 2008
Good luck to Barry Sanders! I took QM and Advanced QM and I still think that the quantum world is pretty difficult to visualize therefore I only rely on math.
Mayday
1 / 5 (1) Dec 17, 2008
Oh, I get it now!
Alizee
Dec 17, 2008
This comment has been removed by a moderator.
Alizee
Dec 18, 2008
This comment has been removed by a moderator.