Researcher refining synthetic molecules to prevent HIV resistance

Dec 16, 2008

Evolving HIV viral strains and the adverse side effects associated with long-term exposure to current treatments propel scientists to continue exploring alternative HIV treatments. In a new study, a University of Missouri researcher has identified broad-spectrum aptamers. Aptamers are synthetic molecules that prevent the HIV virus from reproducing. In lab tests, aptamers known as RT5, RT6, RT47 and some variants of those were recently identified to be broad-spectrum, which would allow them to treat many subtypes of HIV-1. Now, researchers are gaining a better understanding of the biochemical characteristics that make aptamers broad-spectrum.

"Aptamers are promising candidates as anti-HIV and anti-cancer therapeutic agents for reducing virus infectivity," said Donald Burke-Aguero, an associate professor in the Department of Molecular Microbiology and Immunology in the Christopher S. Bond Life Sciences Center. "They also might be beneficial in developing gene therapy applications."

In cell cultures, aptamers have suppressed viral replication by inhibiting important enzymes in the HIV-1 virus. One important enzyme is reverse transciptase (RT), which copies genetic material and generates new viruses. Scientists hope to create aptamers that will disrupt RT and suppress the virus's growth. Aptamers can reduce viral infectivity by blocking the normal action of RT.

"Successful aptamers get in the way of the virus's genetic material, which it is trying to copy as it invades a cell," Burke-Aguero said. "The structure of the aptamer is very important. Broad-spectrum aptamers must have an adaptable structure, which make it difficult for RT to get around them.

There are several different HIV-1 subtypes around the world, and each subtype has a different amino acid sequence making it difficult to create a single aptamer that will work on every substype. Synthetic molecules must be the right size and shape to bind with HIV proteins, Burke-Aguero said.

"The first batch of aptamers developed were designed for a particular virus and would not work on all strains of HIV," Burke-Aguero said. "Now our goal is to develop broad-spectrum aptamers. If an aptamer has broad-spectrum function, viruses will be less likely to develop resistance to the therapy. We are in the process of refining aptamers and understanding the nature of resistance in order to get multi-year to lifetime protection."

Burke-Aguero's study, "Novel Bimodular DNA Aptamers with Guanosine Quadruplexes Inhibit Phylogenetically Diverse HIV-1 Reverse Transciptases," was published in Nucleic Acids Research.

Source: University of Missouri-Columbia

Explore further: Research shows anti-HIV medicines can cause damage to fetal hearts

add to favorites email to friend print save as pdf

Related Stories

LiquidPiston unveils quiet X Mini engine prototype

1 hour ago

LiquidPiston has a new X Mini engine which is a small 70 cubic centimeter gasoline powered "prototype. This is a quiet, four-stroke engine with near-zero vibration. The company said it can bring improvements ...

Rare new species of plant: Stachys caroliniana

2 hours ago

The exclusive club of explorers who have discovered a rare new species of life isn't restricted to globetrotters traveling to remote locations like the Amazon rainforests, Madagascar or the woodlands of the ...

New terahertz device could strengthen security

2 hours ago

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

European space plane set for February launch

2 hours ago

Europe's first-ever "space plane" will be launched on February 11 next year, rocket firm Arianespace said Friday after a three-month delay to fine-tune the mission flight plan.

Recommended for you

New study reveals why some people may be immune to HIV-1

Nov 20, 2014

Doctors have long been mystified as to why HIV-1 rapidly sickens some individuals, while in others the virus has difficulties gaining a foothold. Now, a study of genetic variation in HIV-1 and in the cells ...

Virus discovery could impact HIV drug research

Nov 20, 2014

A research team led by Portland State University (PSU) biology professor Ken Stedman has unlocked the structure of an unusual virus that lives in volcanic hot springs. The discovery could pave the way for better drugs to ...

UN warns over threat of AIDS rebound

Nov 19, 2014

South African actress Charlize Theron threw her weight Tuesday behind an urgent new UN campaign to end AIDS as a global health threat by 2030.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.