Measuring conductance of carbon nanotubes, one by one

Dec 15, 2008 By Anne Ju
This 3D microscopic image of a simple nanotube device is taken with photothermal current microscopy performed in Jiwoong Park's lab. The two yellow blocks are electrodes, and strung between them are carbon nanotubes. The strength of each nanotube's electrical signal is visible according to its brightness. Image: Adam W. Tsen

(PhysOrg.com) -- A single batch of carbon nanotubes -- molecular carbon cylinders that may one day revolutionize electronics engineering -- often includes more than 100 types of tubes, each with different optical and electrical properties. Individual electrical measurements of the molecules typically require such slow and expensive methods as electron-beam lithography.

But now a team of Cornell researchers has invented an efficient, inexpensive method to electrically characterize individual carbon nanotubes, even when they are of slightly different shapes and sizes and are networked together.

Led by Jiwoong Park, Cornell assistant professor of chemistry and chemical biology, the group has demonstrated how to measure electrical conductance of both a single nanotube, and up to 150 of them arrayed together, using a single set of electrodes and the heat from a laser. The method is called photothermal current microscopy and could be a major step toward full manipulation of carbon nanotubes in electronic device engineering. It would be especially useful, Park said, for analyzing nanostructures when they are difficult to distinguish from one another.

"There is this tremendous excitement about nanostructures and nanoscale devices," Park said. "But there are a number of things we still need to figure out. One is, we have to be able to measure a large number of them simultaneously so we can have better control when we synthesize them. And that's easier said than done."

The results are reported in Nature Nanotechnology (already online and forthcoming in print Vol. DOI: 10.1038/NNano.2008.363). Collaborators include first author Adam W. Tsen, a graduate student of applied physics; Luke A.K. Donev, a graduate student of physics; Huseyin Kurt, a former postdoctoral associate at Harvard University; and Lihong H. Herman, a graduate student of applied physics.

For their technique, the researchers attached a pair of electrodes to the ends of an array of carbon nanotubes. They then used a laser to heat one nanotube at a time, which reduced the amount of electrical current flowing through it. The conductance change was proportional to the conductance of the nanotube being hit by the laser.

In essence, the nanotubes became temperature sensors, Park explained, and their conductance changes helped the researchers characterize which nanotubes were more or less conductive.

Provided by Cornell University

Explore further: Study sheds new light on why batteries go bad

add to favorites email to friend print save as pdf

Related Stories

'Small' transformation yields big changes

Sep 15, 2014

An interdisciplinary team of researchers led by Northeastern University has developed a novel method for controllably constructing precise inter-nanotube junctions and a variety of nanocarbon structures in ...

Aligned carbon nanotube / graphene sandwiches

Sep 12, 2014

By in situ nitrogen doping and structural hybridization of carbon nanotubes (CNTs) and graphene via a two-step chemical vapor deposition (CVD), scientists have fabricated nitrogen-doped aligned carbon nanotu ...

Used-cigarette butts offer energy storage solution

Aug 05, 2014

A group of scientists from South Korea have converted used-cigarette butts into a high-performing material that could be integrated into computers, handheld devices, electrical vehicles and wind turbines ...

Recommended for you

For electronics beyond silicon, a new contender emerges

53 minutes ago

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

2 hours ago

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

3 hours ago

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

Moving silicon atoms in graphene with atomic precision

Sep 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

ny_cespedes
not rated yet Dec 27, 2008
Can't wait for the true {nano} Era to begin.