Viewing cancer cells in 'real' time

Dec 15, 2008

A breakthrough technique that allows scientists to view individually-labeled tumor cells as they move about in real time in a live mouse may enable scientists to develop microenvironment-specific drugs against cancer, researchers report at the American Society for Cell Biology (ASCB) 48th Annual Meeting, Dec. 13-17, 2008 in San Francisco.

With this technique, researchers at the Albert Einstein College of Medicine's Gruss Lipper Biophotonics Center in New York City are targeting intravasation, the deadly process by which tumor cells invade the surrounding basal membrane and tap into blood vessels, from which they obtain nutrients that allow them to grow and spread in the body.

Viewing the cancer cells in real time through a special glass "window" inserted into a tumor in the animal's mammary gland, the scientists marked the cells in the tumor with a green fluorescent protein and then bathed two small groups of cells in a blue laser, permanently "photo-switching" the green fluorescence to red.

Through the glass "window," the researchers followed the two red photo-switched cancer cell populations as they grew and moved about in reaction to their microenvironments.

The scientists, Bojana Gligorijevic, Dmitriy Kedrin and Jacco van Rheenen, in the labs of Jeff Segall and John Condeelis at Albert Einstein, found that the microenvironment decides single cells' fate even in a very small tumor.

In the experiment, the two red-switched cell populations were only five cell diameters apart in the tumor.

One group was near a blood vessel, while the other was farther "inland" in the tumor. Twenty-four hours after the red markers were switched on, the cancer cells near the vessel could be seen moving towards the blood supply.

The number of these marked cells decreased as they were launched into the blood circulation. Meanwhile, the inland cancer population moved little but increased in number.

Gligorijevic says that she and her colleagues will zero in on the differences between the two microenvironments, to identify the critical interactions that drive intravasation in one part of the tumor and not in the other.

"Using this approach we can now link the behavior of individual tumor cells to the type of microenvironment within the tumor, a classification which will help us in developing and testing microenvironment-specific drugs," Gligorijevic explains.

Source: American Society for Cell Biology

Explore further: Discovery could lead to new cancer treatment

add to favorites email to friend print save as pdf

Related Stories

Tilted acoustic tweezers separate cells gently

Aug 25, 2014

Precise, gentle and efficient cell separation from a device the size of a cell phone may be possible thanks to tilt-angle standing surface acoustic waves, according to a team of engineers.

New tool aids stem cell engineering for medical research

Aug 28, 2014

A Mayo Clinic researcher and his collaborators have developed an online analytic tool that will speed up and enhance the process of re-engineering cells for biomedical investigation. CellNet is a free-use Internet platform ...

Introducing the multi-tasking nanoparticle

Aug 26, 2014

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles ...

Recommended for you

Discovery could lead to new cancer treatment

Aug 29, 2014

A team of scientists from the University of Colorado School of Medicine has reported the breakthrough discovery of a process to expand production of stem cells used to treat cancer patients. These findings could have implications ...

Is the HPV vaccine necessary?

Aug 29, 2014

As the school year starts in full swing many parents wonder if their child should receive the HPV vaccine, which is recommended for girls ages 11-26 and boys 11-21. There are a lot of questions and controversy around this ...

User comments : 0