Solar flare surprise

Dec 15, 2008
The X9-class solar flare of Dec. 5, 2006, observed by the Solar X-Ray Imager aboard NOAA's GOES-13 satellite. Credit: NOAA's Space Weather Prediction Center

(PhysOrg.com) -- Solar flares are the most powerful explosions in the solar system. Packing a punch equal to a hundred million hydrogen bombs, they obliterate everything in their immediate vicinity. Not a single atom should remain intact. At least that's how it's supposed to work.

"We've detected a stream of perfectly intact hydrogen atoms shooting out of an X-class solar flare," says Richard Mewaldt of the California Institute of Technology. "What a surprise! If we can understand how these atoms were produced, we'll be that much closer to understanding solar flares."

The event occurred on Dec. 5, 2006. A large sunspot rounded the sun's eastern limb and with little warning it exploded. On the "Richter scale" of flares, which ranks X1 as a big event, the blast registered X9, making it one of the strongest flares of the past 30 years.

NASA managers braced themselves. Such a ferocious blast usually produces a blizzard of high-energy particles dangerous to both satellites and astronauts. An hour later they arrived, but they were not the particles researchers expected.

NASA's twin Solar TErrestrial RElations Observatory (STEREO) spacecraft made the discovery: "It was a burst of hydrogen atoms," says Mewaldt. "No other elements were present, not even helium (the sun's second most abundant atomic species). Pure hydrogen streamed past the spacecraft for a full 90 minutes."

Next came 30 minutes of quiet. The burst subsided and STEREO's particle counters returned to low levels. The event seemed to be over when a second wave of particles enveloped the spacecraft. These were the "broken atoms" flares are supposed to produce—protons and heavier ions such as helium, oxygen and iron. "Better late than never," he says.

At first, this unprecedented sequence of events baffled scientists, but now Mewaldt and colleagues believe they're getting to the bottom of the mystery.

First, how did the hydrogen atoms resist destruction?

"They didn't," says Mewaldt. "We believe they began their journey to Earth in pieces, as protons and electrons. Before they escaped the sun's atmosphere, however, some of the protons captured an electron, forming intact hydrogen atoms. The atoms left the sun in a fast, straight shot before they could be broken apart again." (For experts: The team believes the electrons were recaptured by some combination of radiative recombination and charge exchange.)

Second, what delayed the ions?

"Simple," says Mewaldt. "Ions are electrically charged and they feel the sun's magnetic field. Solar magnetism deflects ions and slows their progress to Earth. Hydrogen atoms, on the other hand, are electrically neutral. They can shoot straight out of the sun without magnetic interference."

Imagine two runners dashing for the finish line. One (the ion) is forced to run in a zig-zag pattern with zigs and zags as wide as the orbit of Mars. The other (the hydrogen atom) runs in a straight line. Who's going to win?

"The hydrogen atoms reached Earth almost two hours before the ions," says Mewaldt.

Mewaldt believes that all strong flares might emit hydrogen bursts, but they simply haven't been noticed before. He's looking forward to more X-flares now that the two STEREO spacecraft are widely separated on nearly opposite sides of the Sun. (In 2006 they were still together near Earth.) STEREO-A and –B may be able to triangulate future bursts and pinpoint the source of the hydrogen. This would allow the team to test their ideas about the surprising phenomenon.

"All we need now," he says, "is some solar activity."

For more information about this research, look for the article "STEREO Observations of Energetic Neutral Atoms during the 5 December 2006 Solar Flare" by R. A. Mewaldt et al., in a future issue of the Astrophysical Journal Letters.

For more information about STEREO, please visit: www.nasa.gov/stereo .

Provided by NASA's Goddard Space Flight Center

Explore further: Astronomers discover likely precursors of galaxy clusters we see today

Related Stories

Scientists develop cool process to make better graphene

Mar 18, 2015

A new technique invented at Caltech to produce graphene—a material made up of an atom-thick layer of carbon—at room temperature could help pave the way for commercially feasible graphene-based solar cells ...

Humble neutron is valuable tool in geology

Mar 16, 2015

With the ability to analyse the properties of the Earth's internal components to the atomic scale in conditions only found kilometres below our feet, recent studies have allowed geoscientists to study our ...

New nanomaterials will boost renewable energy

Mar 09, 2015

Global energy consumption is accelerating at an alarming rate. There are three main causes: rapid economic expansion, population growth, and increased reliance on energy-based appliances across the world.

Carina Nebula survey reveals details of star formation

Mar 09, 2015

A new Rice University-led survey of one of the most active star-forming regions in the galactic neighborhood is helping astronomers better understand the processes that may have contributed to the formation ...

Recommended for you

Rocky planets may orbit many double stars

12 hours ago

Luke Skywalker's home in "Star Wars" is the desert planet Tatooine, with twin sunsets because it orbits two stars. So far, only uninhabitable gas-giant planets have been identified circling such binary stars, ...

Is the universe finite or infinite?

Mar 27, 2015

Two possiblities exist: either the Universe is finite and has a size, or it's infinite and goes on forever. Both possibilities have mind-bending implications.

'Teapot' nova begins to wane

Mar 27, 2015

A star, or nova, has appeared in the constellation of Sagittarius and, even though it is now waning, it is still bright enough to be visible in the sky over Perth through binoculars or a telescope.

Dark matter is darker than once thought

Mar 27, 2015

This panel of images represents a study of 72 colliding galaxy clusters conducted by a team of astronomers using NASA's Chandra X-ray Observatory and Hubble Space Telescope. The research sets new limits on ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

axemaster
5 / 5 (2) Dec 16, 2008
"(For experts: The team believes the electrons were recaptured by some combination of radiative recombination and charge exchange.)"

Thank you! Really! Thank you!

I'm glad they know we exist.
Thecis
not rated yet Dec 16, 2008
hahaha,
always nice to be recognised.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.