New gene variants present opportunities in nutrigenomics

Dec 15, 2008

A new study uncovers 11 gene variants associated with three blood lipids measured to determine cardiovascular disease risk: low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) and triglycerides. The discovery opens up new opportunities for nutrigenomics researchers looking for links between diet and genetics that will optimize health and lower chronic disease risk.

"Practically all genes related to lipid levels in the bloodstream respond to changes in the diet," says Jose M. Ordovas, PhD, one of five senior authors of the study and director of the Nutrition and Genomics Laboratory at the Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University (USDA HNRCA).

"With this new knowledge, we are closer to identifying precise dietary recommendations for people at risk for cardiovascular disease. For instance, carriers of a certain variant gene could reduce their risk of disease with a low-cholesterol diet, carriers of another variant gene may benefit from the Mediterranean diet, while a high-fiber diet may be the healthiest option for carriers of yet another variant gene."

In addition to the 11 new genes, the authors' findings strengthen the association of 19 previously identified genes with LDL and HDL cholesterol and triglycerides. Ordovas collaborated with 60 authors, led by corresponding author Sekar Kathiresan, MD, of Massachusetts General Hospital, for the study published December 7 online in Nature Genetics December 7. The study is a meta-analysis of over 20,000 subjects in genome-wide association studies of humans in the United States and Europe with The Framingham Heart Study accounting for the largest number of samples.

"Having identified a total of 30 gene variants is a landmark in lipid research," says Ordovas, also a professor at the Friedman School of Nutrition and Science Policy at Tufts and Tufts University School of Medicine "It suggests people can have multiple variant genes contributing to dyslipidemia, a combination of spiked LDL and triglyceride levels and extremely low HDL-cholesterol signaling cardiovascular disease risk.

"It is possible there are even more variant genes contributing to dyslipidemia, but even larger studies and more complete genomic characterization based on sequencing are necessary to provide a more complete picture, including interactions with dietary components" Ordovas adds.

More information: Kathiresan, S. et al. Nature Genetics. Dec. 7, 2008 (online)."Common variants at 30 loci contribute to polygenic dyslipidemia."

Source: Tufts University

Explore further: A nucleotide change could initiate fragile X syndrome

add to favorites email to friend print save as pdf

Related Stories

Why white dogs are white

Aug 13, 2014

(Phys.org) —About half of all dogs show some form of white spotting which can range from a few white marks in the Bernese mountain dog to extreme white coat color in Dalmatians and white boxer. But why ...

DNA based diagnostics 2.0

Jul 01, 2014

The latest generation of DNA sequencers allows all the genes of a plant, as well as any pathogens present, to be charted literally within a few days. "This provides unprecedented opportunities for the diagnosis ...

Bloodsucking mite threatens UK honeybees

Jun 26, 2014

Scientists have discovered how a bloodsucking parasite has transformed Deformed Wing Virus (DWV) into one of the biggest threats facing UK honeybees.

Recommended for you

A nucleotide change could initiate fragile X syndrome

5 hours ago

Researchers reveal how the alteration of a single nucleotide—the basic building block of DNA—could initiate fragile X syndrome, the most common inherited form of intellectual disability. The study appears ...

Gene clues to glaucoma risk

Aug 31, 2014

Scientists on Sunday said they had identified six genetic variants linked to glaucoma, a discovery that should help earlier diagnosis and better treatment for this often-debilitating eye disease.

Mutation disables innate immune system

Aug 29, 2014

A Ludwig Maximilian University of Munich team has shown that defects in the JAGN1 gene inhibit the function of a specific type of white blood cells, and account for a rare congenital immune deficiency that ...

Study identifies genetic change in autism-related gene

Aug 28, 2014

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

User comments : 0