Preventing a broken heart: Research aims to reduce scarring from heart attacks

Dec 14, 2008

A heart damaged by heart attack is usually broken, at least partially, for good. The injury causes excessive scar tissue to form, and this plays a role in permanently keeping heart muscle from working at full capacity.

Now researchers have identified a key molecule involved in controlling excessive scar tissue formation in mice following a heart attack. When they stopped the scarring from occurring, the scientists found that the animals' heart function greatly improved following the injury.

The study, by scientists at the University of Wisconsin-Madison and Cornell University, appears in Nature Cell Biology online Dec. 14, 2008.

The findings offer heartening news for the millions who have heart attacks each year and suffer from the resulting poor heart function. The study raises the hope that the outlook for people with this major disability might be markedly improved.

The scientists studied a protein, sFRP2, which they unexpectedly found to be involved in the formation of collagen, the main component of scar tissue.

"With many injuries and diseases, large amounts of collagen are formed and deposited in tissues, leading to scarring and a condition called fibrosis," explains co-author Daniel S. Greenspan, professor of pathology and laboratory medicine at the UW School of Medicine and Public Health. "Fibrosis can seriously affect the functioning of heart, lung, liver and other tissues."

Greenspan, an expert on collagen, joined with Thomas Sato of Weill Cornell Medical College to study mice that don't produce sFRP2 to understand how the protein works. When the scientists restricted blood flow to the animals' hearts, mimicking a heart attack, they found that scarring was significantly reduced in these sFRP2-free animals.

"Importantly, we found that when we reduced the level of fibrosis, heart function significantly improved in the mice," says Greenspan, also a professor of pharmacology at UW-Madison.

Identifying agents that specifically target sFRP2 and halt its activity will be a promising approach to controlling heart attack-induced scarring and impaired heart function, says Greenspan, and his lab has begun the search. The UW scientists also hope to study how sFRP2 and other proteins that enhance collagen formation may interact.

The protein may also be important in treating other diseases resulting in severe fibrosis, adds Greenspan, including liver cirrhosis and interstitial lung disease.

Source: University of Wisconsin-Madison

Explore further: Dual role: Key cell division proteins also power up mitochondria

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

New pain relief targets discovered

3 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

4 hours ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

Proper stem cell function requires hydrogen sulfide

7 hours ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

User comments : 0

More news stories

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...

Our brains are hardwired for language

A groundbreaking study published in PLOS ONE by Prof. Iris Berent of Northeastern University and researchers at Harvard Medical School shows the brains of individual speakers are sensitive to language univer ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...