Method sorts out double-walled carbon nanotube problem

Dec 14, 2008

It's hard to study something with any rigor if the subject can't be produced uniformly and efficiently. Researchers who study double-walled carbon nanotubes -- nanomaterials with promising technological applications -- find themselves in just this predicament.

The problem is that current techniques for synthesizing double-walled carbon nanotubes also produce unwanted single- and multi-walled nanotubes. These two forms each have interesting properties, but an intriguing blend of those properties is found in double-walled nanotubes, attracting the attention of an increasing number of researchers. (A double-walled nanotube is made up of two concentric single-walled nanotubes.)

Perhaps most significantly, double-walled nanotubes provide distinct advantages when used in transparent conductors, materials that are important components of solar cells and flat-panel displays because they are optically transparent and electrically conductive. As the demand for energy-efficient devices and alternative energy sources rises worldwide so does the demand for transparent conductive films.

Two Northwestern University researchers now offer a clever solution to the double-walled nanotube production problem. They used a technique developed at Northwestern called density gradient ultracentrifugation to cleanly and easily separate the double-walled nanotubes (DWNTs) from the single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs).

The sorting method works by exploiting subtle differences in the buoyant densities of the nanotubes as a function of their size and electronic behavior. The results will be published online Sunday, Dec. 14, by the journal Nature Nanotechnology. The paper also will appear as the cover story in the January 2009 issue of the journal.

"Nanomaterials possess the unique attribute that their properties depend on physical dimensions such as diameter," said Mark C. Hersam, professor of materials science and engineering in Northwestern's McCormick School of Engineering and Applied Science, professor of chemistry in the Weinberg College of Arts and Sciences and the paper's senior author.

"This size dependence implies, however, that the physical dimensions must be exquisitely controlled in order to realize uniform and reproducible performance in devices. Our study directly addresses this issue for double-walled carbon nanotubes, an emerging nanomaterial with applications in information technology, biotechnology and alternative energy," said Hersam.

He collaborated with Alexander A. Green, a graduate student in materials science and engineering at Northwestern and lead author of the paper, titled "Processing and Properties of Highly Enriched Double-Walled Carbon Nanotubes."

Using the Northwestern method, carbon nanotubes first are encapsulated in water by soap-like molecules called surfactants. The surfactant-coated nanotubes then are sorted in density gradients that are spun at tens of thousands of rotations per minute in an ultracentrifuge. Each nanotube's diameter and electronic structure help determine the nanotube's buoyant density, which enables the method to separate DWNTs from the SWNTs and MWNTs.

The double-walled nanotubes, the researchers discovered, were approximately 44 percent longer than the single-walled nanotubes. This longer length of the DWNTs results in a factor of 2.4 improvement in the electrical conductivity of transparent conductors.

Double-walled nanotubes also enable improved spatial resolution and longer scanning lifetimes as tips for atomic force microscopes and are useful in field-effect transistors, biosensing and drug delivery.

Source: Northwestern University

Explore further: Carbon nanoballs can greatly contribute to sustainable energy supply

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.