The hottest white dwarf in its class

Dec 12, 2008
White dwarfs in the globular cluster M4. In this picture, only the faintest stars are white dwarfs. © NASA and H. Richer (University of British Columbia)

(PhysOrg.com) -- A team of German and American astronomers present far-ultraviolet observations of white dwarf KPD 0005+5106 and reveal that it is among the hottest stars ever known with a temperature of 200 000 K at its surface. Astronomy & Astrophysics is publishing this discovery, which was made through spectroscopic observations with NASA's space-based Far-Ultraviolet Spectroscopic Explorer (FUSE).

Astronomy & Astrophysics is publishing spectroscopic observations with NASA's space-based Far-Ultraviolet Spectroscopic Explorer (FUSE) of the white dwarf KPD 0005+5106. The team of German and American astronomers who present these observations show that this white dwarf is among the hottest stars known so far, with a temperature of 200 000 K at its surface. It is so hot that its photosphere exhibits emission lines in the ultraviolet spectrum, a phenomenon that has never been seen before. These emission features stem from extremely ionized calcium (nine-fold ionized, i.e., CaX), which is the highest ionization stage of a chemical element ever discovered in a photospheric stellar spectrum.

Stars of intermediate mass (1-8 solar masses) terminate their life as an Earth-sized white dwarf after the exhaustion of their nuclear fuel. During the transition from a nuclear-burning star to the white dwarf stage, the star becomes very hot. Many such objects with surface temperatures around 100 000 Kelvin are known. Theories of stellar evolution predict that the stars can be much hotter. However, the probability of catching them in such an extremely hot state is low, because this phase is rather short-lived.

Since its discovery as a faint blue star in 1985, KPD 0005+5106 attracted much attention because optical spectra taken with ground-based telescopes suggested that this white dwarf is very hot. In addition, it belongs to a particular class of rare white dwarfs whose atmospheres are dominated by helium. A detailed analysis of these spectra, combined with ultraviolet observations performed with the Hubble Space Telescope (HST), had led to the conclusion that KPD 0005+5106 has a temperature of 120 000 Kelvin, which made it the hottest member of its class. It was, however, rivaled by other similarly hot white dwarfs, discovered a few years ago in the Sloan Digital Sky Survey.

The FUSE observatory performed spectroscopy in the far-ultraviolet wavelength range, which is inaccessible to HST. During its lifetime (1999-2007), FUSE frequently observed KPD 0005+5106 because it was used as a calibration target to track the telescope's performance. The team of astronomers, including K. Werner, T. Rauch, and J.W. Kruk, made use of all accumulated data and obtained a dataset of outstanding quality. Close inspection revealed the presence of two emission lines from calcium, and detailed stellar atmosphere modeling confirmed their photospheric origin. The analysis proves that the temperature must be 200 000 Kelvin, for the presence of these emission lines to be possible.

Although theory predicted the existence of such hot white dwarfs, the star nevertheless represents a challenge to our concepts of stellar evolution because of its composition. The measured calcium abundance (1-10 times the solar value) in combination with the helium-rich nature of its atmosphere represents a chemical surface composition that is not predicted by stellar evolution models.

Citation: Discovery of photospheric CaX emission lines in the far-UV spectrum of the hottest known white dwarf (KPD 0005+5106), by K. Werner, T. Rauch, and J. W. Kruk. Astronomy & Astrophysics Letters, 2008, volume 492-3, pp. L43.

Source: Astronomy & Astrophysics

Explore further: New space telescope concept could image objects at far higher resolution than Hubble

add to favorites email to friend print save as pdf

Related Stories

When a bright light fades

Dec 22, 2014

Astronomer Charles Telesco is primarily interested in the creation of planets and stars. So, when the University of Florida's giant telescope was pointed at a star undergoing a magnificent and explosive death, ...

Under the bright lights of an aging sun

Jul 04, 2014

Life as we know it on Earth is linked to our star, the Sun, which provides our planet with just the right amount of heat and energy for liquid water to be stable in our lakes, rivers and oceans. However, ...

New molecules around old stars

Jun 17, 2014

(Phys.org) —Using ESA's Herschel space observatory, astronomers have discovered that a molecule vital for creating water exists in the burning embers of dying Sun-like stars.

Chance meeting creates celestial diamond ring

Apr 09, 2014

Astronomers using ESO's Very Large Telescope in Chile have captured this eye-catching image of planetary nebula PN A66 33—usually known as Abell 33. Created when an aging star blew off its outer layers, ...

Recommended for you

Chandra celebrates the International Year of Light

Jan 23, 2015

The year of 2015 has been declared the International Year of Light (IYL) by the United Nations. Organizations, institutions, and individuals involved in the science and applications of light will be joining ...

Why is Andromeda coming toward us?

Jan 23, 2015

I don't want to alarm you, but there's a massive galaxy heading our way and will collide with us in a few billion years. But aren't most galaxies speeding away? Why is Andromeda on a collision course with ...

The cosmic chemistry that gave rise to water

Jan 22, 2015

Earth's water has a mysterious past stretching back to the primordial clouds of gas that birthed the Sun and other stars. By using telescopes and computer simulations to study such star nurseries, researchers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.