Researcher Finds Early Photon Imaging Detects Lung Cancer

Dec 08, 2008
Researcher Finds Early Photon Imaging Detects Lung Cancer

(PhysOrg.com) -- A novel, high-resolution fluorescence imaging system may be used to detect lung cancer at early stages. According to a report recently published in the Proceedings of the National Academy of Sciences, researchers from Northeastern University and the Technical University of Munich have developed a way to use near-infrared light in molecular imaging to peer deep into the body's diseased cells and tissues.

The near-infrared imaging system uses an ultra-fast laser source and high-speed cameras to generate three-dimensional images of fluorescent bio-markers. So far this system has been used to create richer, high-fidelity images of lung cancer in mice and associated biochemical changes in surrounding tissues.

The team, including lead author Mark Niedre, assistant professor of Electrical and Computer Engineering at Northeastern University, and Vasilis Ntziachristos, professor and Chair for Biological Imaging at the Technical University of Munich, used a fluorescent molecular probe that was specific to a tumor-associated protease to image the lung cancer.

"We were able to capture fluorescent photons that arrived at the detector earliest and therefore underwent significantly less scattering" said Niedre. "In doing so, we were surprised to find that, not only were we able to see tumors in lungs with more clarity, but we were able to resolve features in the image that were not visible with more conventional optical methods."

The enhanced images allowed detection of primary tumors, but also systemic biochemical changes in surrounding tissue associated with inflammatory response and disease progression, in this case yielding complementary information to that obtained with standard X-ray CT. Although at an early stage of development, researchers are hopeful that the technique will become a valuable biomedical research tool, and one day possibly even applied clinically.

Titled "Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo," the study was conducted while Niedre was a post-doctoral fellow at Massachusetts General Hospital in Boston. Niedre is continuing his research at Northeastern University where his interests include diffuse fluorescence tomography, time-domain imaging and photodynamic therapy.

Provided by Northeastern University

Explore further: DNA blood test detects lung cancer mutations

Related Stories

Hair today, communication trigger tomorrow

39 minutes ago

Beauty technology? Don't be concerned if at first you missed the mark. "Beauty technology" does not refer to how ingredients are processed and packaged on shampoo and soap assembly lines. Katia Vega is a ...

Mass beaching fuels 'unscientific' Japan quake fears

58 minutes ago

The mass beaching of more than 150 melon-headed whales on Japan's shores has fuelled fears of a repeat of a seemingly unrelated event in the country—the devastating 2011 undersea earthquake that killed ...

Florida takes aim at cat-eating African lizards

11 hours ago

A cat-eating lizard native to Africa is being targeted by Florida state wildlife officials who say the creatures, known as Nile monitors, could be dangerous to pets and people.

Recommended for you

DNA blood test detects lung cancer mutations

22 hours ago

Cancer DNA circulating in the bloodstream of lung cancer patients can provide doctors with vital mutation information that can help optimise treatment when tumour tissue is not available, an international group of researchers ...

Tumors prefer the easy way out

Apr 17, 2015

Tumor cells become lethal when they spread. Blocking this process can be a powerful way to stop cancer. Historically, scientists thought that tumor cells migrated by brute force, actively pushing through whatever ...

Brain tumors may be new targets of Ebola-like virus

Apr 17, 2015

Brain tumors are notoriously difficult for most drugs to reach, but Yale researchers have found a promising but unlikely new ally against brain cancers—portions of a deadly virus similar to Ebola.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.