Researcher Finds Early Photon Imaging Detects Lung Cancer

Dec 08, 2008
Researcher Finds Early Photon Imaging Detects Lung Cancer

(PhysOrg.com) -- A novel, high-resolution fluorescence imaging system may be used to detect lung cancer at early stages. According to a report recently published in the Proceedings of the National Academy of Sciences, researchers from Northeastern University and the Technical University of Munich have developed a way to use near-infrared light in molecular imaging to peer deep into the body's diseased cells and tissues.

The near-infrared imaging system uses an ultra-fast laser source and high-speed cameras to generate three-dimensional images of fluorescent bio-markers. So far this system has been used to create richer, high-fidelity images of lung cancer in mice and associated biochemical changes in surrounding tissues.

The team, including lead author Mark Niedre, assistant professor of Electrical and Computer Engineering at Northeastern University, and Vasilis Ntziachristos, professor and Chair for Biological Imaging at the Technical University of Munich, used a fluorescent molecular probe that was specific to a tumor-associated protease to image the lung cancer.

"We were able to capture fluorescent photons that arrived at the detector earliest and therefore underwent significantly less scattering" said Niedre. "In doing so, we were surprised to find that, not only were we able to see tumors in lungs with more clarity, but we were able to resolve features in the image that were not visible with more conventional optical methods."

The enhanced images allowed detection of primary tumors, but also systemic biochemical changes in surrounding tissue associated with inflammatory response and disease progression, in this case yielding complementary information to that obtained with standard X-ray CT. Although at an early stage of development, researchers are hopeful that the technique will become a valuable biomedical research tool, and one day possibly even applied clinically.

Titled "Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo," the study was conducted while Niedre was a post-doctoral fellow at Massachusetts General Hospital in Boston. Niedre is continuing his research at Northeastern University where his interests include diffuse fluorescence tomography, time-domain imaging and photodynamic therapy.

Provided by Northeastern University

Explore further: Endogenous hormones improve breast cancer risk models

add to favorites email to friend print save as pdf

Related Stories

Advancing medicine, layer by layer

Jul 02, 2014

Personalized cancer treatments and better bone implants could grow from techniques demonstrated by graduate students Stephen W. Morton and Nisarg J. Shah, who are both working in chemical engineering professor ...

New particle-sorting method breaks speed records

Jun 24, 2014

Researchers compare the processing of biological fluid samples with searching for a needle in a haystack—only in this case, the haystack could be diagnostic samples, and the needle might be tumor cells ...

Making progress on deforestation

Jun 24, 2014

In 2005, Brazil was losing more forest each year than any other country. The good news is that today, Brazil has reduced deforestation in the Amazon rainforest by 70 percent, according to a recent study. ...

Recommended for you

Endogenous hormones improve breast cancer risk models

18 hours ago

(HealthDay)—Inclusion of endogenous hormones in prediction models improves prediction of invasive breast cancer risk in postmenopausal women, according to a study published online Aug. 18 in the Journal of ...

Novel oncogenic RET mutation found in small cell lung cancer

18 hours ago

For the first time an oncogenic somatic mutation at amino acid 918 in the RET (rearranged during transfection) protein has been identified in small cell lung cancer (SCLC) tumors and enforced expression of this mutation within ...

User comments : 0