Photoacoustics useful in cancer research

Dec 05, 2008
The formation of new blood capillaries shown using photoacoustics.

(PhysOrg.com) -- Photoacoustics can be used to show the development of blood capillaries in and around a tumour. PhD student, Kiran Kumar Thumma, of the University of Twente (Netherlands) is the first to use the technology to follow the development of a tumour over a period of time. His results show that the application of photoacoustics is a useful addition to the methods usually used in tumour research. Mr Thumma will be awarded his PhD at the faculty of Science and Technology today.

Angiogenesis, the growth of new blood capillaries, is an important indicator for the growth and spread of tumours. It is not only possible to follow the growth of blood capillaries using photoacoustics, but also to measure the oxygen saturation of the blood in these blood capillaries. This yields valuable information, given that the formation of new blood capillaries drives rapid tumour growth and that the oxygen saturation of the blood can give an indication of the nature of the tumour. Photoacoustics is, therefore, a useful addition to the existing methods used to map tumours, that is, magnetic resonance imaging (MRI), computed axial tomography (CT) and ultrasonography.

Photoacoustics

The photoacoustic method investigated in this research fires (laser) light pulses lasting a fraction of a second at a tissue. These light pulses cause a slight, localised heating of the tissue, which subsequently causes a pressure wave. The pressure wave propagates through the body and can be detected as ultrasound at the tissue surface. As is the case with ultrasonography, a three-dimensional picture can then be reconstructed of absorbent structures, in this case, of the blood vessels in the tumour. The wavelength of the light pulses used in this research was chosen such as to reveal haemoglobin, an important component of blood.

The research was carried out by the PhD student in cooperation with the Erasmus Medical Center in Rotterdam. This is the first time that photoacoustic technology has been used to follow the development of a tumour over a period of time. To this end, Mr Thumma introduced tumour cells under the skin of a rat, which then developed into a tumour. On various days images were made of the tumour and the oxygen saturation was displayed.

Provided by Universiteit Twente

Explore further: New technology allows hair to reflect almost any color

add to favorites email to friend print save as pdf

Related Stories

New material puts a twist in light

2 hours ago

Scientists at The Australian National University (ANU) have uncovered the secret to twisting light at will. It is the latest step in the development of photonics, the faster, more compact and less carbon-hungry ...

Controversial Alaska mine project wins one in Congress

2 hours ago

Supporters of the embattled Pebble Mine project in Alaska are making a desperate effort in Congress and the courts to keep it alive in the face of warnings from the Environmental Protection Agency that it could devastate ...

Recommended for you

New technology allows hair to reflect almost any color

39 minutes ago

What if you could alter your hair to reflect any color in the spectrum? What if you could use a flatiron to press a pattern into your new hair color? Those are possibilities suggested by researchers from ...

Monitoring the rise and fall of the microbiome

9 hours ago

Trillions of bacteria live in each person's digestive tract. Scientists believe that some of these bacteria help digest food and stave off harmful infections, but their role in human health is not well understood.

Antioxidant biomaterial promotes healing

16 hours ago

When a foreign material like a medical device or surgical implant is put inside the human body, the body always responds. According to Northwestern University's Guillermo Ameer, most of the time, that response can be negative ...

User comments : 0