Photoacoustics useful in cancer research

Dec 05, 2008
The formation of new blood capillaries shown using photoacoustics.

(PhysOrg.com) -- Photoacoustics can be used to show the development of blood capillaries in and around a tumour. PhD student, Kiran Kumar Thumma, of the University of Twente (Netherlands) is the first to use the technology to follow the development of a tumour over a period of time. His results show that the application of photoacoustics is a useful addition to the methods usually used in tumour research. Mr Thumma will be awarded his PhD at the faculty of Science and Technology today.

Angiogenesis, the growth of new blood capillaries, is an important indicator for the growth and spread of tumours. It is not only possible to follow the growth of blood capillaries using photoacoustics, but also to measure the oxygen saturation of the blood in these blood capillaries. This yields valuable information, given that the formation of new blood capillaries drives rapid tumour growth and that the oxygen saturation of the blood can give an indication of the nature of the tumour. Photoacoustics is, therefore, a useful addition to the existing methods used to map tumours, that is, magnetic resonance imaging (MRI), computed axial tomography (CT) and ultrasonography.

Photoacoustics

The photoacoustic method investigated in this research fires (laser) light pulses lasting a fraction of a second at a tissue. These light pulses cause a slight, localised heating of the tissue, which subsequently causes a pressure wave. The pressure wave propagates through the body and can be detected as ultrasound at the tissue surface. As is the case with ultrasonography, a three-dimensional picture can then be reconstructed of absorbent structures, in this case, of the blood vessels in the tumour. The wavelength of the light pulses used in this research was chosen such as to reveal haemoglobin, an important component of blood.

The research was carried out by the PhD student in cooperation with the Erasmus Medical Center in Rotterdam. This is the first time that photoacoustic technology has been used to follow the development of a tumour over a period of time. To this end, Mr Thumma introduced tumour cells under the skin of a rat, which then developed into a tumour. On various days images were made of the tumour and the oxygen saturation was displayed.

Provided by Universiteit Twente

Explore further: Goat to be cloned to treat rare genetic disorder

add to favorites email to friend print save as pdf

Related Stories

Nanosystems Capture and Destroy Circulating Tumor Cells

Jan 14, 2010

(PhysOrg.com) -- Just as fly paper captures insects, a pair of nanotechnology-enabled devices are able to grab cancer cells in the blood that have broken off from a tumor. These cells, known as circulating tumor cells, or ...

Recommended for you

Researchers transplant regenerated oesophagus

17 hours ago

Tissue engineering has been used to construct natural oesophagi, which in combination with bone marrow stem cells have been safely and effectively transplanted in rats. The study, published in Nature Communications, shows ...

User comments : 0

More news stories

Low Vitamin D may not be a culprit in menopause symptoms

A new study from the Women's Health Initiative (WHI) shows no significant connection between vitamin D levels and menopause symptoms. The study was published online today in Menopause, the journal of The North American Menopa ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.