Maintaining the brain's wiring in aging and disease

Dec 05, 2008

Researchers at the Babraham Institute near Cambridge, supported by the Alzheimer's Research Trust and the Biotechnology and Biological Sciences Research Council (BBSRC), have discovered that the brain's circuitry survives longer than previously thought in diseases of ageing such as Alzheimer's disease. The findings were published today in the journal Brain.

Alzheimer's disease causes nerve cells in the brain to die, resulting in problems with memory, speech and understanding. Little is known about how the nerve cells die, but this new research has revealed how they first lose the ability to communicate with each other, before deteriorating further.

"We've all experienced how useless a computer is without broadband. The same is true for a nerve cell (neuron) in the brain whose wiring (axons and dendrites) has been lost or damaged," explained Dr Michael Coleman the project's lead researcher. "Once the routes of communication are permanently down, the neuron will never again contribute to learning and memory, because these 'wires' do not re-grow in the human brain."

But axons and dendrites are much more than inert fibre-optic wires. They are homes to the world's smallest transport tracks. Every one of our hundred billion nerve cells continuously shuttles hundreds of proteins and intracellular packages out along its axons and dendrites, and back again, during every minute of every day. Without this process, the wires cannot be maintained and the nervous system will cease to function within a few hours.

During healthy ageing this miniature transport system undergoes a steady decline, but the challenges are immense. Axons up a metre long have to survive and function for at least eight or nine decades. Over this period, our homes will need rewiring several times, but in our brains the wires are all original, surviving from childhood. In Alzheimer's disease, axons swell dramatically, ballooning to 10 or 20 times their normal diameter. These swellings disrupt transport but not, it seems, completely. Enough material gets through the swellings to keep more distant parts of the axon alive for at least several months, and probably for a year or more. This is important because it suggests a successful therapy applied during this early period may not only halt the symptoms, but allow a degree of functional recovery.

"We've been able to look at whole nerve cells affected by Alzheimer's", said Dr Michael Coleman. "For the first time we have shown that supporting parts of nerve cells are alive, and we can now learn how to intervene to recover connections. This is very important for treatment because in normal adult life, nerve cell connections constantly disappear and reform, but can only do so if the supporting parts of the cell remain. Our results suggest a time window in which damaged connections between brain cells could recover under the right conditions."

This basic research gives hope over the longer term to the 700,000 people in the UK who live with dementia. Understanding how the brain responds to disease also tells us a lot about how it functions in all of us.

Source: Biotechnology and Biological Sciences Research Council

Explore further: The impact of bacteria in our guts

add to favorites email to friend print save as pdf

Related Stories

Hitchhiking nanotubes show how cells stir themselves

May 30, 2014

(Phys.org) —Chemical engineers from Rice University and biophysicists from Georg-August Universität Göttingen in Germany and the VU University Amsterdam in the Netherlands have successfully tracked single ...

Axons' unexpected cytoskeleton structure

Jan 28, 2013

(Phys.org)—The plasma membranes that give cells their shapes are typically upheld by linear meshworks of the protein actin. In contrast, Howard Hughes Medical Institute scientists have now discovered that ...

A whole new meaning for thinking on your feet

Dec 12, 2011

Smithsonian researchers report that the brains of tiny spiders are so large that they fill their body cavities and overflow into their legs. As part of ongoing research to understand how miniaturization affects ...

Recommended for you

The impact of bacteria in our guts

6 hours ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

6 hours ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

7 hours ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

DGBEACH
3.3 / 5 (3) Dec 05, 2008
Over this period (eight or nine decades), our homes will need rewiring several times
huh?