Discovery of a debilitating genetic syndrome

Dec 05, 2008

Canadian researchers announce the discovery of MEDNIK Syndrome, a debilitating genetic syndrome. In a study published today in the online version of PLoS Genetics, and in the December edition, a research team led by Dr. Patrick Cossette, from the Université de Montréal Hospital Research Centre (CRCHUM) and Associate Professor, Université de Montréal (U de M), has demonstrated that this syndrome is caused by a newly found mutation in the AP1S1 gene.

MEDNIK syndrome was discovered in a group of families in Quebec from the Kamouraska region, sharing a common ancestor, suspected from clinical manifestations showing striking similarities to those of a similar syndrome. Caused by a mutation in the AP1S1 gene, this syndrome is characterized by mental retardation, enteropathy, deafness, and peripheral neuropathy, ichthyosis, and keratodermia (MEDNIK).

''Our observations strongly suggest that MEDNIK Syndrome is caused by impaired development of various neural networks, including the spinal chord (ataxia and neuropathy), the inner ear (sensorineural deafness) and possibly the brain (microcephaly and psychomotor retardation)," notes Dr. Cossette. ''Disruption of the AP1S1 gene in humans may be associated with more widespread perturbation in the development of various organs, including the gut and the skin. These results suggest interesting avenues for both basic and clinical research to improve our understanding of the mechanisms underlying MEDNIK and related genetic neurocutaneous syndromes."

By using zebrafish as an animal model, the team of researchers from CRCHUM, U de M, Ontario Institute for Cancer Research, McGill University, Université de Sherbrooke, and Centre hospitalier régional du Grand-Portage in Rivière-du-Loup observed that the loss of the AP1S1 gene resulted in these broad defects, including severe motor deficits due to impairment of spinal cord development.

By inducing the expression of the human AP1S1 gene instead of the zebrafish gene, the research team found that the normal human type could rescue these developmental deficits but not the AP1S1 gene bearing the disease-related mutation. This research appears to be the first report of a mutation in human AP1S1.

Source: Université de Montréal Hospital Centre

Explore further: Mutations from Mars: Researchers explain why genetic fertility problems can persist in a population

add to favorites email to friend print save as pdf

Related Stories

First in-situ images of void collapse in explosives

55 minutes ago

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

NASA maps Typhoon Matmo's Taiwan deluge

1 hour ago

When Typhoon Matmo crossed over the island nation of Taiwan it left tremendous amounts of rainfall in its wake. NASA used data from the TRMM satellite to calculate just how much rain fell over the nation.

Recommended for you

Gene research targets scarring process

19 hours ago

Scientists have identified three genes that may be the key to preventing scar formation after burn injury, and even healing existing scars.

Researchers find new mechanism for neurodegeneration

Jul 24, 2014

A research team led by Jackson Laboratory Professor and Howard Hughes Investigator Susan Ackerman, Ph.D., have pinpointed a surprising mechanism behind neurodegeneration in mice, one that involves a defect in a key component ...

User comments : 0