Measuring sound with a nanoscopic air bubble

Dec 04, 2008
In the ultrasound sensor, the interface between water and air acts as a membrane. The vibrations of this membrane are measured using light.

(PhysOrg.com) -- It will soon be possible to measure ultrasonic sound using water, air, light and nanotechnology – over a hundred times more accurately than with existing sensors.

This innovative method is based on a new principle for an ultrasound sensor developed by Helmut Rathgen of the University of Twente, Netherlands. The new sound sensor enables accurate ultrasound scans with a small mobile device and can be used to improve the sonar equipment used on boats. Mr Rathgen was awarded his doctorate on 3 December at the faculty of Science and Technology.

The sensor designed by Helmut Rathgen consists of a glass fibre in which a hole measuring a few hundred nanometres has been bored; a hole many times smaller than a hair. The fibre is placed in a water droplet, so that a miniscule air bubble is created in the cavity. The interface between this air bubble and the water acts as a membrane which begins to vibrate under the influence of ultrasonic sound. The intensity of the sound can be determined by measuring the extent to which the interface vibrates.

The extent of this vibration is measured using a beam of light that is led through the glass fibre. Some of the light reflects against the interface. If the interface begins to vibrate, the intensity of the ultrasonic sound can be determined on the basis of the change in the reflection of the light.

Mobile ultrasound scans

The new sensor is over a hundred times more accurate than existing ultrasonic sound sensors and can be used for many applications. For instance, the sensor can be used in ships which, just like bats, make use of ultrasonic sound to map their environment. The sensor can also be used to improve medical sound scanning. Scans are used for various purposes including following the growth of unborn babies in the uterus. Since the sensor measures very accurately, the body only has to send out a very weak signal to be picked up. This means that it will be possible to make ultrasound scans with a small, battery-powered mobile device in the future.

The PhD student was presented with the NanoNed Innovation Award for his invention on 19 November. The objective of this prize is to encourage young researchers to translate their scientific work into a business idea that meets a demonstrable market need.

The University of Twente has applied for a patent on the invention and will be developing the principle into a ready-to-use product in cooperation with a company in the region.

Provided by University of Twente

Explore further: Weighing and imaging molecules one at a time

Related Stories

Nepal quake: Nearly 1,400 dead, Everest shaken (Update)

1 hour ago

Tens of thousands of people were spending the night in the open under a chilly and thunderous sky after a powerful earthquake devastated Nepal on Saturday, killing nearly 1,400, collapsing modern houses and ...

Russian hackers read Obama emails, report says

1 hour ago

Emails to and from President Barack Obama were read by Russian hackers last year in a breach of the White House's unclassified computer system, The New York Times said Saturday.

Supermarkets welcome cold-comfort edge of F1 aerofoils

6 hours ago

UK-based Williams Advanced Engineering, the technology and engineering services business of the Williams Group, has collaborated with UK-based Aerofoil Energy to develop an aerodynamic device that can reduce ...

Public boarding school—the way to solve educational ills?

9 hours ago

Buffalo's chronically struggling school system is considering an idea gaining momentum in other cities: public boarding schools that put round-the-clock attention on students and away from such daunting problems as poverty, ...

Recommended for you

Weighing and imaging molecules one at a time

13 hours ago

Building on their creation of the first-ever mechanical device that can measure the mass of individual molecules, one at a time, a team of Caltech scientists and their colleagues have created nanodevices ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.