Researchers find new genetic target for sickle cell disease therapy

Dec 04, 2008

Researchers have identified a gene that directly affects the production of a form of hemoglobin that is instrumental in modifying the severity of the inherited blood disorders sickle cell disease and thalassemia. The discovery could lead to breakthrough therapies for sickle cell disease and thalassemia, which could potentially eliminate the devastating and life-threatening complications of these diseases, such as severe pain, damage to the eyes and other organs, infections, and stroke.

"Human Fetal Hemoglobin Expression is Regulated by the Developmental Stage-Specific Repressor BCL11A," is published online in Science December 4. The study was conducted by researchers at Children's Hospital Boston and Dana-Farber Cancer Institute and supported by the National Institutes of Health's National Heart, Lung, and Blood Institute (NHLBI) and National Institutes of Diabetes and Digestive and Kidney Diseases, and by the Howard Hughes Medical Institute.

Hemoglobin is the protein in red blood cells that carries oxygen to the body's tissues. In sickle cell disease, hemoglobin is abnormal and sticks together. The red blood cells become stiff and sickle-shaped, causing them to block blood vessels and rob tissues of necessary blood and oxygen. In thalassemia, the body has trouble producing adult forms of hemoglobin.

Other studies have shown that in patients with sickle cell disease, those who continue to produce fetal hemoglobin (HbF) have much milder forms of sickle cell anemia. For years, scientists have sought ways to increase HbF production in patients with sickle cell disease and thalassemia.

Researchers report that by suppressing a gene called BCL11A, HbF production improves dramatically. Their findings provide new insights into the mechanisms involved in the body's switch from producing fetal hemoglobin to adult hemoglobin and identify a potential new target for therapies that could dramatically alter the course of sickle cell anemia and thalassemia.

The researchers built upon their recently reported results of genome-wide association studies that identified several gene variants associated with HbF levels. BCL11A was found to have the greatest effect on HbF levels. In the follow-up study reported today, they report that BCL11A encodes a transcription factor that directly suppresses HbF production.

A drug therapy that increases HbF levels enough to modify the severity of sickle cell disease is currently available. The drug hydroxyurea was approved by the FDA in 1998 to prevent pain crises in adults with sickle cell disease after studies showed that it increases fetal hemoglobin production, reduces the damaging effects of sickle cell disease, and improves some aspects of quality of life. Use of hydroxyurea is limited, however, in part because not all patients respond to the drug, and there are short-term and long-term adverse effects. New therapies targeting BCL11A would be the first to directly affect the natural processes involved in increasing HbF.

Sickle cell disease is the most common inherited blood disorder. In the United States, it affects approximately 70,000 people, primarily African Americans. Worldwide, sickle cell anemia affects millions of people and is found in people whose families come from Africa, South or Central America (especially Panama), Caribbean islands, Mediterranean countries, India, and Saudi Arabia.
The pain and complications associated with sickle cell disease can have a profound impact on patients' quality of life, ability to work, and long-term health and well-being. In addition, people with sickle cell disease have a shortened life expectancy due to infections, lung problems, and stroke.
Treatments developed over the past three decades have led to the doubling of the life expectancy of sickle cell disease patients between 1972 and 2002. These treatments include medications, blood and bone marrow transfusions, and other procedures to relieve or prevent complications. Until now, however, scientists could not directly target processes known to affect the severity of sickle cell disease.

Source: National Heart, Lung and Blood Institute

Explore further: Ebola expert calls for European anti-virus 'corps'

add to favorites email to friend print save as pdf

Related Stories

Study confirms controversial nitrite hypothesis

Dec 12, 2014

Understanding how nitrite can improve conditions such as hypertension, heart attack and stroke has been the object of worldwide research studies. New research from Wake Forest University has potentially moved the science ...

Faster, cheaper tests for sickle cell disease

Sep 01, 2014

Within minutes after birth, every child in the U.S. undergoes a battery of tests designed to diagnose a host of conditions, including sickle cell disease. Thousands of children born in the developing world, ...

Scientists use light to uncover the cause of sickle cell disease

Nov 05, 2013

In sickle cell disease, hemoglobin—the oxygen-carrying component of blood—forms fibers that stiffen red blood cells and cause life-threatening symptoms. Using light-scattering techniques to study the detailed thermodynamics ...

Recommended for you

Ebola expert calls for European anti-virus 'corps'

Dec 26, 2014

Europe will be "vulnerable" if it does not regard viruses as a "national security issue" like the United States, the microbiologist who discovered Ebola said in an interview published Friday.

In Liberia, Ebola steals Christmas

Dec 26, 2014

The Ebola epidemic has cast a dark shadow over Christmas this year in Liberia, where small businesses are especially feeling the pinch.

Firm recalls caramel apples amid listeria fears

Dec 25, 2014

A Missouri firm is recalling its Happy Apple brand caramel apples because of the potential that they could be contaminated with listeria. The recall comes after at least three deaths and at least 29 illnesses in 10 states ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.