Crystallography reveals the 3-D structure of mammalian sperm receptor

Dec 04, 2008

Scientists at the Swedish medical university Karolinska Institutet have determined the first 3D structure of ZP3, a protein essential for the interaction between the mammalian egg coat and sperm. The findings, presented in Nature, gives a first glimpse into the molecular architecture of animal egg coats, with important implications for the future of human reproductive medicine and the possibility of developing novel contraceptives.

The beginning of every new life starts with fertilization, the most crucial step of which is the initial species-specific recognition between egg and sperm. The receptors for sperm, proteins ZP3 and ZP2, contain a common sequence that allows them to form a matrix of filaments, the so-called zona pellucida that completely surrounds the egg. The Protein Crystallography Unit at Karolinska Institutet, led by Dr. Luca Jovine, has now determined the structure of the most conserved part of this building block, the ZP-N domain.

"ZP3 was identified almost 30 years ago, but obtaining structural information on this key reproductive protein has been technically challenging due to its high heterogeneity", says Luca Jovine.

The zona pellucida is essential for natural fertilization in mammals. The Karolinska Institutet researchers hope that X-ray crystallographic characterization of a region of ZP3 that is important for its ability to polymerize could help explaining cases of human infertility, as well as lead to the development of novel targeted, non-hormonal contraceptives. The research made on the ZP-N domain has also provided insights that extend beyond the field of reproduction. Among other things, an unexpected parallel has been uncovered with molecular features that are involved in speciation among invertebrates.

Moreover, ZP-N domains are also found in many other extracellular proteins that are unrelated to fertilization, but play important roles in human diseases such as non-syndromic deafness, renal and vascular disorders, and cancer. In the Nature paper, an example is discussed that shows how the structure of ZP-N can be used to understand the molecular basis of some of these disorders.

"Mammalian fertilization involves a highly complex series of events. Our findings pave the way for future investigations into this fascinating subject by providing a first snapshot of the beginning of life at atomic resolution", says Luca Jovine.

Publication: 'Crystal structure of the ZP-N domain of ZP3 reveals the core fold of animal egg coats', Magnus Monné, Ling Han, Thomas Schwend, Sofia Burendahl & Luca Jovine, Nature, 4 December 2008.

Source: Karolinska Institutet

Explore further: Ringling elephants say goodbye to the circus

add to favorites email to friend print save as pdf

Related Stories

New Hampshire bill requires cursive, multiplication tables

9 hours ago

As schools adopt new education standards and rely more on computers in the classroom, a group of New Hampshire senators want to make sure the basics of learning cursive and multiplication tables don't get left behind.

Recommended for you

The environmental impact of cats on native wildlife

1 hour ago

A team of researchers, led by Dr Wayne Linklater from the Centre for Biodiversity and Restoration Ecology at Victoria University of Wellington, recently surveyed veterinarians and cat owners to understand ...

Human and animal interaction identified in the viking age

1 hour ago

Since 2001, ancient DNA has been used in paleoparasitological studies to identify eggs found in soil samples from prehistoric periods, because identification cannot be done by morphological study alone. The species of human ...

Ringling elephants say goodbye to the circus

14 hours ago

Across America through the decades, children of all ages delighted in the arrival of the circus, with its retinue of clowns, acrobats and, most especially, elephants.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.