Scientists film inner workings of the immune system

Dec 03, 2008

Forget what's number one at the box office this week. The most exciting new film features the intricate workings of the body, filmed by scientists using ground-breaking technology.

For the first time in Australia, scientists at Sydney's Centenary Institute have filmed an immune cell becoming infected by a parasite and followed the infection as it begins to spread throughout the body.

Professor Wolfgang Weninger, head of the Immune Imaging program at the Centenary Institute, says the discovery (published in PLoS Pathogens) was made possible using high powered multi-photon microscopy which allows real cells to be viewed in real time.

"Using multi-photon microscopy, we studied dendritic cells in the skin. Under normal conditions we found the cells in the epidermis (top layer) were static, whereas in the dermis (second layer) they were very active, moving around as though seeking out pathogens," explains Professor Weninger. "Once we established this, it was fascinating to introduce the Leishmania infection and watch as the parasite was picked up by the cells and the process by which it began to spread throughout the body."

Leishmaniasis affects up to 12 million people in parts of Africa, the Middle East and South America. The disease causes skin sores and can affect internal organs such as the spleen, liver and bone marrow. If left untreated, it can be fatal.

The ability to visually follow a pathogen on its journey through the immune cells provides critical insight for future vaccine design and has potential to improve current vaccinations.

"We now have a general idea of how pathogens are recognised by the immune system and which cells are involved," Professor Weninger says. "This means we can look at identifying the molecules responsible for the uptake of Leishmania infection and these molecules could become vaccine targets. Additionally, we can investigate the immune responses of other infections which could lead to better vaccines."

"On the other side of the story, scientists can now visualise the pathway of current vaccines in the immune system, providing greater understanding and the potential for refining current interventions against disease."

Centenary Institute Executive Director, Professor Mathew Vadas, says the multi-photon microscope used to film this immune process is the Hubble telescope of medical research.

"The Hubble allowed the universe to be seen with absolute clarity, which wasn't before possible from earth," he explains. "This is exactly the same as multi-photon microscopy – it provides a unique and innovative view of cells, unveiling a whole new understanding of how immune processes work."

Source: Research Australia

Explore further: The impact of bacteria in our guts

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

The impact of bacteria in our guts

Aug 22, 2014

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

Aug 22, 2014

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

Aug 22, 2014

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

mvg
4.6 / 5 (8) Dec 03, 2008
Ok,
Lets see the pictures.
tigger
4.6 / 5 (9) Dec 03, 2008
Yeah, I get a bit tired of these articles talking about pictures or videos... then we either get a crappy thumbnail version... or nothing :-(
xeoroex
4.3 / 5 (6) Dec 03, 2008
published in PLoS Pathogens
( www.plospathogens.org )

Article : Migratory Dermal Dendritic Cells Act as Rapid Sensors of Protozoan Parasites
( http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1000222 )

Videos are near the end , Video S6 and S7 are cool to see them move around in 3d environment.
nxtr
5 / 5 (4) Dec 03, 2008
watch video S8, it shows how the defender cell engulfs the little red parasites. looks like a lava lamp eating tiny bits.
Henka
5 / 5 (4) Dec 04, 2008
I've been haunting physorg for a long time and am always disappointed by the severe lack of decent links to origional articles and/or video/images.

If it wasn't for the articles themselves, I'd have abandoned physorg ages ago.

I reckon it's one of the aspects which prevent this site from being "great", and not just "good".