Breakthrough Made in Metamaterial Optics

Dec 03, 2008

(PhysOrg.com) -- Researchers have solved one of the significant remaining challenges with photonic “metamaterials,” discovering a way to prevent the loss of light as it passes through these materials, and opening the door to many important new optical, electronic and communication technologies.

The advance, made by scientists from Oregon State University and Norfolk State University, was just published in Physical Review Letters.

“The ability to compensate for optical loss is a very large step forward for the whole field of active plasmonics,” said Viktor Podolskiy, an OSU assistant professor of physics. “Some of the most important potential applications in this field have been held back by this problem.”

These “metamaterials,” which gain their properties from their structure rather than directly from their composition, have been seen as a key to a possible “super lens” that would have an extraordinary level of resolution and be able to “see” things the size of a nanometer - a human hair is 100,000 nanometers wide.

They could also be important in machine visions systems, electronics manufacturing, computers limited only by the speed of light, and a range of new communications concepts. A “cloaking device” to hide objects, although not exactly of the type made famous by Star Trek, is also a possibility.

“This is a significant breakthrough,” said Mikhail Noginov, professor in the Department of Physics and the Center for Materials Research at Norfolk State University in Norfolk, Va. “Many of the fantastic possible applications of these materials have been largely prevented by the obstacle of the absorption loss. That’s a big problem that we should now be able to work past.”

Photonic metamaterials are engineered composite materials with unique electromagnetic properties, and have attracted significant research interest in recent years due to their potential to create “negative index” materials that bend light the opposite way of anything found in the natural world. But their performance has been significantly limited by the absorption of light by metals that are part of their composition - metal might absorb much more than 50 percent of the light shined on it, and drastically reduce the performance of devices based on these materials.

The solution to this problem, researchers discovered, is to offset this lost light by adding an optical “gain” to a dielectric adjacent to the metal. The new publication outlines how to successfully do that, and demonstrates the ability to completely compensate for lost light. It had been theorized that this might be possible, the researchers said, but it had never before been done, and the theories themselves were the subject of much scientific debate.

As such, this may have removed a final roadblock and now made possible “a number of dreamed about applications,” Podolskiy said.

“Our work proves that the compensation of surface plasmon polariton loss by gain is indeed possible, opening the road for many practical applications of nanoplasmonics and metamaterials,” the researchers wrote in their study. “Besides resolving of the fundamental limitations of modern nanoplasmonics, the observed phenomenon adds a new emission source to the toolbox of active optical metamaterials.”

Article: link.aps.org/abstract/PRL/v101/e226806

Provided by Oregon State University

Explore further: New material puts a twist in light

add to favorites email to friend print save as pdf

Related Stories

Surrey NanoSystems has "super black" material

Jul 15, 2014

(Phys.org) —A British company says it has scored a breakthrough in the world's darkest material. Surrey NanoSystems describes its development as not just a black material but super-black. They are calling ...

A narrower spectrum for a wider view of matter

Jul 11, 2014

Condensed matter physicists, who study the physics of solids and liquids, often use a technique called "inelastic scattering," in which they bounce photons or neutrons of selected energy off a material and ...

Recommended for you

'Comb on a chip' powers new atomic clock design

9 hours ago

Researchers from the National Institute of Standards and Technology (NIST) and California Institute of Technology (Caltech) have demonstrated a new design for an atomic clock that is based on a chip-scale ...

Creating optical cables out of thin air

14 hours ago

Imagine being able to instantaneously run an optical cable or fiber to any point on earth, or even into space. That's what Howard Milchberg, professor of physics and electrical and computer engineering at ...

New material puts a twist in light

Jul 18, 2014

Scientists at The Australian National University (ANU) have uncovered the secret to twisting light at will. It is the latest step in the development of photonics, the faster, more compact and less carbon-hungry ...

Plasmon-enhanced Polarization-selective filter

Jul 17, 2014

As we all know, some optical devices can only work with a certain incident polarization direction. In this case, a polarizer is necessary to shift the polarization direction of linearly polarized light. A ...

User comments : 0