Vaccine and drug research aimed at ticks and mosquitoes to prevent disease transmission

Dec 02, 2008

Most successful vaccines and drugs rely on protecting humans or animals by blocking certain bacteria from growing in their systems. But, a new theory actually hopes to take stopping infectious diseases such as West Nile virus and Malaria to the next level by disabling insects from transmitting these viruses. Research to be presented at the 57th American Society of Tropical Medicine and Hygiene (ASTMH) annual meeting in New Orleans, explains how vaccines and drugs may not only be able to stop disease transmission, but also prematurely kill the vectors carrying these diseases; such vectors include ticks, sand flies and mosquitoes – the insects responsible for most deaths world wide.

"In order to successfully slow the transmission rate of these potentially fatal diseases, we need to reduce the lifespan of the vector, or block them from becoming infected in the first place," explains Brian Foy, Ph.D., at Colorado State University. "One of our goals is to curtail the spread of mosquito-borne diseases through strategic use of compounds, known as endectocides, to target hosts. This new strategy will make blood meals from humans lethal to mosquitoes so they die before they can transmit a disease." Endectocides are currently mass administered to human populations to control the worm parasites that cause river blindness and are widely used in animals for worm control.

Professor Foy says that thanks to new technologies using genomics, scientists can now sift through vector genomes to more quickly and accurately find protein targets, which can then aid in the development of more specified drugs and vaccines.

A vaccine developed using functional genomics is already in early stages for cattle, whose production is greatly affected by tick-borne diseases. Katherine Kocan, Ph.D., at Oklahoma State University, concentrates her research on tick vaccines and anaplasmosis, a tick-transmitted disease of cattle that infects the red blood cells, causing mild to severe anemia and often death. "Even if the cow doesn't die," explains Professor Kocan, "the bacteria serve as a continued source of infection for cows and ticks. We are working on a vaccine to target tick-protective genes, so when ticks feed on immunized cattle, the vaccine antibodies interfere directly with the biology of the tick and its feeding pattern which results in reduced tick populations." The vaccine model being developed for cattle, which we call a dual target vaccine approach because both ticks and tick-borne pathogens are targeted, will likely be applicable to other ticks and the bacteria that they transmit.

According to Professor Foy, this theory of vaccine and drug development would offer many advantages over currently-used mosquito and tick-borne disease control measures: it would be more targeted than environmental spraying of insecticides; proper application would kill older frequently-biting insects and interrupt disease transmission; resistance would be slower to develop; and there may be little cross-resistance from agricultural applications.

Source: American Society of Tropical Medicine and Hygiene

Explore further: Evidence-based recs issued for systemic care in psoriasis

add to favorites email to friend print save as pdf

Related Stories

Habitual use of fire as told from cave near Haifa

19 minutes ago

Scientists have not been content with the exercise of dating when man first used fire. While the earliest evidence for hominin use of fire dates to more than a million years ago, scientists have been keen ...

At UN climate talks, a crack in rich-poor barrier

59 minutes ago

A last-minute deal that salvaged U.N. climate talks from collapse early Sunday sends a signal the rich-poor divide that long held up progress can be overcome with a year to go before a landmark pact is supposed ...

People finding their 'waze' to once-hidden streets

15 hours ago

When the people whose houses hug the narrow warren of streets paralleling the busiest urban freeway in America began to see bumper-to-bumper traffic crawling by their homes a year or so ago, they were baffled.

Identity theft victims face months of hassle

15 hours ago

As soon as Mark Kim found out his personal information was compromised in a data breach at Target last year, the 36-year-old tech worker signed up for the retailer's free credit monitoring offer so he would ...

Observers slam 'lackluster' Lima climate deal

15 hours ago

A carbon-curbing deal struck in Lima on Sunday was a watered-down compromise where national intransigence threatened the goal of a pact to save Earth's climate system, green groups said.

Recommended for you

Bacteria in caramel apples kills at least four in US

2 hours ago

A listeria outbreak believed to originate from commercially packaged caramel apples has killed at least four people in the United States and sickened 28 people since November, officials said Friday.

Steroid-based treatment may answer needs of pediatric EoE patients

2 hours ago

A new formulation of oral budesonide suspension, a steroid-based treatment, is safe and effective in treating pediatric patients with eosinophilic esophagitis (EoE), according to a new study in Clinical Gastroenterology and Hepatology, the official clinical practice journal ...

Discovery of genes that predispose a severe form of COPD

4 hours ago

A study by Ramcés Falfán-Valencia, researcher at the National Institute of Respiratory Diseases (INER), found that the mestizo Mexican population has a number of variations in certain genes that predispose ...

On the environmental trail of food pathogens

5 hours ago

Tracking one of the deadliest food contamination organisms through produce farms and natural environments alike, Cornell microbiologists are showing how to use big datasets to predict where the next outbreak could start.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.