Avalanches -- triggered from the valley

Dec 02, 2008
The interstices between the ice crystals play a significant role in the formation of cracks in the snow. Credit: Jane Blackford and Chris Jeffree, Universitaet Edinburgh

Everybody knows that skiers swishing down steep slopes can cause extensive slab avalanches. But there is a less well known phenomenon: A person skiing a gentle slope in the valley triggers a slab avalanche on a steeper slope, sometimes several hundred meters further uphill. This scenario doesn't seem to make sense – yet it claims human lives year after year.

But what exactly happens when an avalanche is remotely triggered? "In a slab avalanche, the upper layer of snow slides down into the valley. For that to be able to happen, it first has to become detached from the layer beneath it," says Prof. Dr. Peter Gumbsch, director of the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg.

The view commonly held until now assumes that the layers of snow are separated by shear cracks – the upper layer shifts within a limited area. If the two layers of snow were two hands placed palm to palm, a shear crack would be equivalent to rubbing one hand against the other. The layers of snow can only shift if the slope is steep enough. Shear cracks may be a satisfactory explanation for the breakaway of snow slabs in steep terrain. But how can they be triggered from a distance?

Gumbsch and his colleagues Michael Zaiser and Joachim Heierli at the University of Edinburgh, Scotland, have developed a physical model that explains this phenomenon. "The boundary layer that connects the upper and lower layers of snow is made of ice crystals with fairly large interstices," explains Heierli. The pressure exerted by a skier can cause the ice crystals to break, separate from one another and slip into the interstices – the layer collapses. The layer on top of it subsides. This mass collapse, which can be described as an anti-crack, releases energy that has not previously been taken into account. This energy enables the crack to propagate. To return to our previous analogy, the anti-crack would be like pressing the two hands together.

Experiments carried out by Canadian researchers at the University of Calgary confirm the theory: Whether the slope is gentle or steep, it is equally difficult to trigger the collapse. Once it has started, it propagates as an anti-crack. It can move up or down the mountain and grow to a length of several hundred meters within a few seconds: The layers of snow lose their cohesion. Only the forces of friction can then prevent the snow from slipping. If these are insufficient, the upper layer slides off and a slab avalanche begins.

Source: Fraunhofer-Gesellschaft

Explore further: The risks of blowing your own trumpet too soon on research

add to favorites email to friend print save as pdf

Related Stories

Weathering the storm

Sep 03, 2014

Old-timers sharing childhood stories about growing up in Maine sometimes recount hiking 10 miles uphill in 3 feet of snow to get to school—and home.

What geology has to say about global warming

Jul 14, 2014

Last month I gave a public lecture entitled, "When Maine was California," to an audience in a small town in Maine. It drew parallels between California, today, and Maine, 400 million years ago, when similar ...

Forces of martian nature

Jul 11, 2014

The surface of Mars is pocked and scarred with giant impact craters and rocky ridges, as shown in this new image from ESA's Mars Express that borders the giant Hellas basin in the planet's southern hemisphere.The ...

NASA rover prototype set to explore Greenland ice sheet

May 01, 2013

(Phys.org) —NASA's newest scientific rover is set for testing May 3 through June 8 in the highest part of Greenland. The robot known as GROVER, which stands for both Greenland Rover and Goddard Remotely ...

Recommended for you

Hide and seek: Sterile neutrinos remain elusive

1 hour ago

The Daya Bay Collaboration, an international group of scientists studying the subtle transformations of subatomic particles called neutrinos, is publishing its first results on the search for a so-called ...

Novel approach to magnetic measurements atom-by-atom

5 hours ago

Having the possibility to measure magnetic properties of materials at atomic precision is one of the important goals of today's experimental physics. Such measurement technique would give engineers and physicists an ultimate ...

Scientists demonstrate Stokes drift principle

8 hours ago

In nature, waves – such as those in the ocean – begin as local oscillations in the water that spread out, ripple fashion, from their point of origin. But fans of Star Trek will recall a different sort of wave pattern: ...

User comments : 0