Claudin 11 stops the leaks in neuronal myelin sheaths

Dec 01, 2008

Devaux and Gow demonstrate how a tight junction protein called claudin 11 makes the neuronal myelin sheath a snug fit. The study will be published in the December 1, 2008 issue of the Journal of Cell Biology.

Like the rubber coating on a copper wire, the myelin sheath—a membrane extension of glial cells that spirals around the axons of neurons—creates an insulation layer that prevents current leakage from axons and aids electrical conduction along the length of the axon.

Claudin 11 forms tight junctions between successive spiral layers of the myelin sheath, but it was unknown whether it was required for myelin to act as a good insulator. To examine this question, Devaux and Gow compared electrical recordings from the optic nerve of wild-type and claudin 11 knockout mice. They found that although claudin 11 deficiency caused no gross defects in the appearance of the myelin sheath, it slowed electrical signals—at least in neurons with small-diameter axons.

Using a computer model that incorporates the resistive and capacitive properties of axons (and their myelin sheaths), the authors showed that claudin 11 adds to the electrical resistance of myelin by preventing leakage of charged ions (and electrical current) through the spiral space between myelin layers. The reduced resistance in the absence of claudin 11 affects small-diameter axons most severely because such axons have thinner myelin sheaths and thus less insulation to begin with. Because neurons with small-diameter axons are mostly found in the CNS, the authors speculate that defects in claudin 11 could be associated with deficits in cognition and perception, like those found in schizophrenia or neurodegenerative diseases.

Citation: Devaux, J., and A. Gow. 2008. J. Cell Biol. doi:10.1083/jcb.200808034. (www.jcb.org)

Source: Rockefeller University

Explore further: First structural insights into how plant immune receptors interact

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Orchid named after UC Riverside researcher

1 hour ago

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

For resetting circadian rhythms, neural cooperation is key

2 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Fear of the cuckoo mafia

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...