Study identifies genetic variants giving rise to differences in metabolism

Nov 28, 2008

Common genetic polymorphisms induce major differentiations in the metabolic make-up of the human population, according to a paper published November 28 in the open-access journal PLoS Genetics. An international team of researchers, led by Karsten Suhre, has conducted a genome-wide association study with metabolomics, identifying genetic variants in genes involved in the breakdown of fats. The resulting differences in metabolic capacity can affect individuals' susceptibility to complex diseases such as diabetes and hyperactivity.

In the rapidly evolving field of metabolomics, scientists aim to measure all endogenous metabolites in a cell or body fluid. These measurements provide a functional readout of the physiological state of the human body. Investigation into these so-called "genetically determined metabotypes" in their biochemical context may help determine the pathogenesis of common diseases and gene-environment interactions.

The team identified four single nucleotide polymorphisms (SNPs) located in genes coding for well-characterized enzymes of the lipid metabolism. Individuals with different genotypes in these genes have significantly different metabolic capacities with respect to the synthesis of some polyunsaturated fatty acids, the beta-oxidation of short- and medium-chain fatty acids and the breakdown of triglycerides. By simultaneous measurements of both SNPs and serum concentrations of endogenous metabolites, the researchers determined the metabolome of several hundred healthy individuals and compared it to their genetic inheritance.

The results suggest that most individuals carry one or more risk alleles in their genetic inheritance that may determine a certain medical phenotype, the response to a given drug treatment, or the reaction to a nutritional intervention or environmental challenge. These findings may lead to more targeted approaches to health care based on a combination of genotyping and metabolic characterization. To achieve this goal, it will be necessary to identify the major genetically determined metabotypes and their association to complex diseases.

Citation: Gieger C, Geistlinger L, Altmaier E, Hrabe´ de Angelis M, Kronenberg F, et al. (2008) Genetics Meets Metabolomics: A Genome-Wide Association Study of Metabolite Profiles in Human Serum. PLoS Genet 4(11): e1000282. doi:10.1371/journal.pgen.1000282
dx.plos.org/10.1371/journal.pgen.1000282

Source: Public Library of Science

Explore further: Could ibuprofen be an anti-aging medicine? Popular over-the counter drug extends lifespan in yeast, worms and flies

add to favorites email to friend print save as pdf

Related Stories

International team maps 'big bang' of bird evolution

Dec 11, 2014

The genomes of modern birds tell a story of how they emerged and evolved after the mass extinction that wiped out dinosaurs and almost everything else 66 million years ago. That story is now coming to light, ...

March of the penguin genomes

Dec 11, 2014

Two penguin genomes have been sequenced and analyzed for the first time in the open access, open data journal GigaScience. Timely for the holiday season, the study reveals insights into how these birds have b ...

Toxic fruits hold the key to reproductive success

Dec 09, 2014

In the course of evolution, animals have become adapted to certain food sources, sometimes even to plants or to fruits that are actually toxic. The driving forces behind such adaptive mechanisms are often ...

Team proposes new model for snake venom evolution

Dec 08, 2014

Technology that can map out the genes at work in a snake or lizard's mouth has, in many cases, changed the way scientists define an animal as venomous. If oral glands show expression of some of the 20 gene ...

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.