Researchers Say Tides Can Cut Life Short On Planets Orbiting Smaller Stars

Nov 27, 2008
Artist's impression of the planetary system around the red dwarf Gliese 581. The five Earth-mass planet in the foreground, Gliese 581 c, is just inside the habitable zone. (European Space Agency)

(PhysOrg.com) -- Planet hunters searching for planets suitable for life will likely find them first around low-mass stars because it's technically easier than finding such planets around hotter, more massive stars, researchers predict.

But Earth-like planets around stars smaller than our sun won't be liveable for long, according to a study led by Rory Barnes, a research associate with The University of Arizona's Lunar and Planetary Laboratory. Such planets can face "tidal extinction" within about a billion years.

A star only a quarter-to-a-tenth as massive as our sun is also cooler than our sun, so the "habitable zone" for its planets – where water is liquid – also will be closer in, Barnes said.

"This close proximity results in accelerated tidal evolution," Barnes said. "Tides will be so powerful that the Earth-like planet's orbit will shrink. In some cases, orbits can shrink so much and so quickly that the planet may pulled through the inner edge of the habitable zone in less than a billion years, and all the planet's water will boil away."

If habitable planets around low-mass stars are massive enough and, say, have more circular, less eccentric orbits, they could last 4.5 billion years – the age of the Earth – before the star's tidal forces tugs them closer in to roast.

"Planet hunters may detect planets in habitable zones that are doomed to become uninhabitable in the future," Barnes said. "Alternatively, they may find planets today that were liveable in the past, but where any life was wiped out by this process of tidal extinction."

Barnes, Brian Jackson and Professor Richard Greenberg, all with the UA Lunar and Planetary Laboratory, and Sean Raymond of the Center for Astrophysics and Space Astronomy at the University of Colorado, published their study in the article "Tides and the Evolution of Planetary Habitability," in Astrobiology magazine earlier this year.

Jackson, Barnes and Greenberg recently published another paper on the major role tidal forces play in pulling planets into and out of solar system habitable zones. One conclusion in that paper, published in the Monthly Notices of the Royal Astronomical Society, is that the first Earth-like planets found will likely be strongly heated and very volcanically active.

Barnes will talk about it at a departmental colloquium on Tuesday, Dec. 2.

Provided by University of Arizona

Explore further: Partial solar eclipse over the U.S. on Thursday, Oct. 23

add to favorites email to friend print save as pdf

Related Stories

Rotation of planets influences habitability

Aug 08, 2014

There are currently almost 2,000 extrasolar planets known to us, but most are inhospitable gas giants. Thanks to NASA's Kepler mission, a handful of smaller, rockier planets have been discovered within the ...

Magnetic fields are crucial to exomoon habitability

Sep 27, 2013

Astronomers believe that hidden deep within the wealth of data collected by NASA's Kepler mission are minuscule signatures confirming the presence of exomoons. With such a promising discovery on the horizon, ...

Astrobiology research: Life possible on extrasolar moons

Jan 10, 2013

(Phys.org)—In their search for habitable worlds, astronomers have started to consider exomoons, or those likely orbiting planets outside the solar system. In a new study, a pair of researchers has found ...

Recommended for you

Partial solar eclipse over the U.S. on Thursday, Oct. 23

Oct 17, 2014

People in most of the continental United States will be in the shadow of the Moon on Thursday afternoon, Oct. 23, as a partial solar eclipse sweeps across the Earth. For people looking through sun-safe filters, from Los Angeles, ...

A newborn supernova every night

Oct 17, 2014

Thanks to a $9 million grant from the National Science Foundation and matching funds from the Zwicky Transient Facility (ZTF) collaboration, a new camera is being built at Caltech's Palomar Observatory that ...

Scientists build first map of hidden universe

Oct 16, 2014

A team led by astronomers from the Max Planck Institute for Astronomy has created the first three-dimensional map of the 'adolescent' Universe, just 3 billion years after the Big Bang. This map, built from ...

User comments : 0