Researchers Say Tides Can Cut Life Short On Planets Orbiting Smaller Stars

Nov 27, 2008
Artist's impression of the planetary system around the red dwarf Gliese 581. The five Earth-mass planet in the foreground, Gliese 581 c, is just inside the habitable zone. (European Space Agency)

(PhysOrg.com) -- Planet hunters searching for planets suitable for life will likely find them first around low-mass stars because it's technically easier than finding such planets around hotter, more massive stars, researchers predict.

But Earth-like planets around stars smaller than our sun won't be liveable for long, according to a study led by Rory Barnes, a research associate with The University of Arizona's Lunar and Planetary Laboratory. Such planets can face "tidal extinction" within about a billion years.

A star only a quarter-to-a-tenth as massive as our sun is also cooler than our sun, so the "habitable zone" for its planets – where water is liquid – also will be closer in, Barnes said.

"This close proximity results in accelerated tidal evolution," Barnes said. "Tides will be so powerful that the Earth-like planet's orbit will shrink. In some cases, orbits can shrink so much and so quickly that the planet may pulled through the inner edge of the habitable zone in less than a billion years, and all the planet's water will boil away."

If habitable planets around low-mass stars are massive enough and, say, have more circular, less eccentric orbits, they could last 4.5 billion years – the age of the Earth – before the star's tidal forces tugs them closer in to roast.

"Planet hunters may detect planets in habitable zones that are doomed to become uninhabitable in the future," Barnes said. "Alternatively, they may find planets today that were liveable in the past, but where any life was wiped out by this process of tidal extinction."

Barnes, Brian Jackson and Professor Richard Greenberg, all with the UA Lunar and Planetary Laboratory, and Sean Raymond of the Center for Astrophysics and Space Astronomy at the University of Colorado, published their study in the article "Tides and the Evolution of Planetary Habitability," in Astrobiology magazine earlier this year.

Jackson, Barnes and Greenberg recently published another paper on the major role tidal forces play in pulling planets into and out of solar system habitable zones. One conclusion in that paper, published in the Monthly Notices of the Royal Astronomical Society, is that the first Earth-like planets found will likely be strongly heated and very volcanically active.

Barnes will talk about it at a departmental colloquium on Tuesday, Dec. 2.

Provided by University of Arizona

Explore further: Can astronomy explain the biblical Star of Bethlehem?

add to favorites email to friend print save as pdf

Related Stories

Exomoons Could Be Abundant Sources Of Habitability

Oct 20, 2014

With about 4,000 planet candidates from the Kepler Space Telescope data to analyze so far, astronomers are busy trying to figure out questions about habitability. What size planet could host life? How far ...

Recommended for you

Can astronomy explain the biblical Star of Bethlehem?

Dec 24, 2014

Bright stars top Christmas trees in Christian homes around much of the world. The faithful sing about the Star of Wonder that guided the wise men to a manger in the little town of Bethlehem, where Jesus was ...

Hubbles spies the beautiful galaxy IC 335

Dec 24, 2014

This new NASA/ESA Hubble Space Telescope image shows the galaxy IC 335 in front of a backdrop of distant galaxies. IC 335 is part of a galaxy group containing three other galaxies, and located in the Fornax ...

Image: Multicoloured view of supernova remnant

Dec 22, 2014

Most celestial events unfold over thousands of years or more, making it impossible to follow their evolution on human timescales. Supernovas are notable exceptions, the powerful stellar explosions that make ...

Ultra-luminous X-ray sources in starburst galaxies

Dec 22, 2014

Ultra-luminous X-ray sources (ULXs) are point sources in the sky that are so bright in X-rays that each emits more radiation than a million suns emit at all wavelengths. ULXs are rare. Most galaxies (including ...

When a bright light fades

Dec 22, 2014

Astronomer Charles Telesco is primarily interested in the creation of planets and stars. So, when the University of Florida's giant telescope was pointed at a star undergoing a magnificent and explosive death, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.