Two-phase microbial resistance: the example of insects

Nov 26, 2008
The immune system of the Tenebrio molitor beetle eliminates the great majority of bacteria infecting it within less than an hour, and then restricts the development of resistant bacteria thanks to the production of antimicrobial peptides over several days, thus preventing the emergence of resistant bacteria. Might it not be possible to copy this model when designing drug therapies that would reduce the development in pathogens of multidrug resistance to antibiotics? © Yannick Moret/Biogéosciences-Dijon (CNRS/Université de Bourgogne)

(PhysOrg.com) -- In less than an hour, the immune system of the beetle Tenebrio molitor neutralizes most of the bacteria infecting its hemolymph (the equivalent to blood in vertebrates); this is rendered possible by a cascade of ready-to-use cells and enzymes. Bacteria that resist these "front-line" defenses are then dealt with by antimicrobial peptides – a sort of natural antibiotic – which halt their proliferation.

A clearer understanding of these actors in insect immunity may make it possible to design treatments that prevent the development of drug resistance. This has been shown in the results of a study carried out by the Equipe Ecologie Evolutive in the Laboratoire Biogéosciences (CNRS/Université de Bourgogne in Dijon), in collaboration with a British research group, and published in the last issue of Science.

Microorganisms have a considerable capacity for adaptation to the many strategies implemented to destroy them. Over the past 400 million or so years, the immune system of animals, and notably the relatively simpler system in insects, appears to have succeeded in preventing the evolution of microbial resistance. The secret to this achievement lies in a small toolbox of targeted natural antibiotics, the antimicrobial peptides.

In the present case, the researchers showed that the so-called "constitutive" front-line of cellular and enzymatic defenses in the insect immune system spares a small number of bacteria and thereby favors the development of microbial resistance. However, a second line of defenses involving antimicrobial peptides synthesized following the elimination of most bacteria by the front line, is able to restrict the growth of these surviving microorganisms, which may lead to their removal.

Thus the principal function of the antimicrobial peptides produced by the insect immune system is to prevent the resurgence of bacteria resistant to the host's constitutive defenses, which will consequently reduce the emergence of resistant bacteria.

References: Antimicrobial defence and persistent infection in insects, Eleanor R. Haine, Yannick Moret, Michael T. Siva-Jothy and Jens Rolff, to appear in Science, 21 November 2008

Provided by CNRS

Explore further: Sheep flock to Eiffel Tower as French farmers cry wolf

add to favorites email to friend print save as pdf

Related Stories

Bio researchers receive patent to fight superbugs

Oct 07, 2014

Superbugs, antibiotic-resistant bacteria, have been on the rise since antibiotics were first introduced 80 years ago. That's because these germ-fighting agents have lost their punch from being overprescribed ...

Battling superbugs with gene-editing system

Sep 21, 2014

In recent years, new strains of bacteria have emerged that resist even the most powerful antibiotics. Each year, these superbugs, including drug-resistant forms of tuberculosis and staphylococcus, infect ...

Fighting bacteria with a new genre of antibodies

Apr 24, 2013

In an advance toward coping with bacteria that shrug off existing antibiotics and sterilization methods, scientists are reporting development of a new family of selective antimicrobial agents that do not ...

Recommended for you

How can we avoid kelp beds turning into barren grounds?

3 hours ago

Urchins are marine invertebrates that mould the biological richness of marine grounds. However, an excessive proliferation of urchins may also have severe ecological consequences on marine grounds as they ...

Genomes of malaria-carrying mosquitoes sequenced

18 hours ago

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

Bitter food but good medicine from cucumber genetics

18 hours ago

High-tech genomics and traditional Chinese medicine come together as researchers identify the genes responsible for the intense bitter taste of wild cucumbers. Taming this bitterness made cucumber, pumpkin ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.