New papers offer insights into process of malarial drug resistance

Nov 26, 2008

Malaria, one of the oldest diseases known to man, has shown no signs of slowing down as it ages. More than 1 million children die from malaria in sub-Saharan Africa each year, and in areas along the Thailand/Cambodian border multiple drug-resistant strains of the disease are becoming commonplace.

With the previously mainstay antimalarial drug chloroquine nearly ineffective due to drug resistance and traditional public health approaches such as mosquito netting offering uneven results, two new papers by University of Notre Dame biologist Michael Ferdig suggest that the means of combating this old foe may lie in the new tools of genomics and bioinformatics.

In the papers, Ferdig points out that development of the malaria parasite Plasmodium falciparum in the blood is driven by a number of different genes expressed at different times and at different levels. Exactly what influences such transcriptional changes remains elusive, particularly in regard to important phenotypes like drug resistance.

Ferdig and his collaborators combined classical genetics with cutting-edge genomic methods to illuminate previously unrecognized transcriptional complexity and variation in Plasmodium falciparum and possibly master regulators within large copy number variants that contribute to the drug-resistant phenomena in malaria parasites.

By uncovering the genetic "architecture" of numerous drug responses and identifying key regulators that control these responses, Ferdig hopes to map new approaches to conquering drug resistant malarial genes.

One paper from the Ferdig lab appeared in the journal PLoS Biology. The second, in collaboration with Tim Anderson at Southwest Biomedical Research Foundation, appeared in PLoS Genetics.

Source: University of Notre Dame

Explore further: Campaigners say protected birds in danger in Malta

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Genome yields insights into golden eagle vision, smell

7 hours ago

Purdue and West Virginia University researchers are the first to sequence the genome of the golden eagle, providing a bird's-eye view of eagle features that could lead to more effective conservation strategies.

Genetic code of the deadly tsetse fly unraveled

8 hours ago

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

8 hours ago

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Engineered E. coli produces high levels of D-ribose

9 hours ago

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...