Kidney function discovery sheds light on genetic complexity of disease

Nov 26, 2008

To find a cure for cancer, haemophilia and other diseases, researchers need to be looking for complex, interacting genetic factors, according to the authors of a new study.

A new study, published in the Journal of Clinical Investigation by researchers at the Centenary Institute, Royal Prince Alfred Hospital (RPA) and The Australian National University (ANU), has exposed a greater level of genetic complexity for diseases than was originally thought.

The researchers looked at two disorders of kidney function - iminoglycinuria and hyperglycinuria. These disorders, first described 50 years ago, are conditions where large amounts of individual amino acids (the building blocks of proteins in our body) are wasted by the kidney.

Professor John Rasko, Head, Gene and Stem Cell Therapy program at Centenary Institute and Cell and Molecular Therapies at RPA, says although up to one in every thousand babies has this disorder at birth, it usually resolves in the first year of life. For those individuals in whom it continues to occur, it is generally thought not to cause medical problems but previous cases have been linked to high blood pressure, kidney stones, deafness and problems in the brain.

"Iminoglycinuria was observed to occur in families and the pattern of inheritance suggested that the cause might be due to an inherited abnormality of a specific pump on the surface of kidney cells," Professor Rasko explains.

The teams from Centenary Institute, RPA and ANU have now unravelled the genetic explanation by showing that not one, but up to four different pumps present in the kidney determine whether or not this particular abnormality occurs.

"The study demonstrates that in some cases mutations occur only in one gene, while in other cases mutations in two or even three different genes are observed, and that the disorders can arise due to mutations in a group of genes carrying out related functions," says Professor Stefan Broer, School of Biochemistry and Molecular Biology at ANU.

"From the point of view of understanding complex diseases in humans, it suggests we need to integrate much greater levels of complex genetic information to reach a clear understanding."

Professor Rasko says that these findings provide a foundation to improve our understanding of common human diseases, and greater potential to develop effective gene therapies to reduce the impact of diseases on patients.

"Gene therapies, whereby cells can be modified and then re-introduced into the body without the genetic mutations that cause illness, provide enormous potential to help cure diseases including haemophilia, cancer and cardiovascular disease," Professor Rasko explains.

"A crucial ingredient of successfully developing gene therapies is a thorough understanding of all the genetic factors at play in disease. This discovery takes us one step closer to understanding the complex factors at work in these serious diseases."

Source: Research Australia

Explore further: Newly discovered hormone mimics the effects of exercise

add to favorites email to friend print save as pdf

Related Stories

Synthetic biology yields new approach to gene therapy

Feb 16, 2015

Bioengineers at The University of Texas at Dallas have created a novel gene-delivery system that shuttles a gene into a cell, but only for a temporary stay, providing a potential new gene-therapy strategy ...

A helping hand for pygmy hippos

Jan 21, 2015

Nobody knows how many pygmy hippos remain in wild habitats in West Africa, but there are only about 350 in captivity world-wide and a researcher at The University of Western Australia is in a race against ...

Colorful nano-guides to the liver

Dec 03, 2014

Jena scientists have been successful in producing highly specific nanoparticles. Depending on the bound dye the particles are guided to the liver or to the kidney and deliver their payload of active ingredients ...

Study finds novel genetic risk factors for kidney disease

May 10, 2009

A team of researchers from the United States, the Netherlands and Iceland has identified three genes containing common mutations that are associated with altered kidney disease risk. One of the discovered genes, the UMOD ...

Recommended for you

Newly discovered hormone mimics the effects of exercise

1 hour ago

Scientists at the USC Leonard Davis School of Gerontology have discovered a new hormone that fights the weight gain caused by a high-fat Western diet and normalizes the metabolism - effects commonly associated ...

Highly sensitive detection of malaria parasites

3 hours ago

New assays can detect malaria parasites in human blood at very low levels and might be helpful in the campaign to eradicate malaria, reports a study published this week in PLOS Medicine. An international team l ...

How fat breakdown contributes to insulin resistance

9 hours ago

New research from the University of Virginia School of Medicine has shed light on how chronic stress and obesity may contribute to type 2 diabetes. The findings point the finger at an unexpected biological perpetrator – ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.