Early Virus Detection in Cells Made Possible by New Research

Nov 25, 2008

The benefits of real-time virus tracking, made possible through research from UCR’s Bourns College of Engineering and the College of Natural and Agricultural Sciences (CNAS) include faster detection and better understanding of antiviral treatments. Work at Bourns and CNAS to provide a significant tool for the rapid detection of viral infection was reported in the Proceedings of the National Academy of Sciences Nov. 11, 2008, edition.

In addition to quick infection detection, the work also has important implications for conducting therapeutic studies of antiviral treatments. Current techniques to detect viruses can take days or weeks.

“If you can detect them earlier and implement prevention procedures, you can delay the infection process,” said Wilfred Chen, professor of chemical and environmental engineering, Bourns College of Engineering, who with student Hsaio-Yun Yeh, Ashok Mulchandani, professor of chemical engineering, and Marylynn Yates, professor of environmental sciences, CNAS, completed the study. The paper is entitled "Visualizing the dynamics of viral replication in living cells via TAT-peptide delivery of nuclease-resistant molecular beacons.”

The UCR team’s study describes using a probe to enter cells, which fluoresces when it detects the viral nucleic acid. Researchers are then able to observe in real time the virus’s reproductive cycle and its spread from cell to cell.

“Our goal was to develop a method to follow virus replication in living cells,” Chen said. “It’s a generalized concept.”

Chen said that while some viruses can replicate quickly, enabling detection within a few days, others can take more than a week to detect using traditional methods.

“We have been working on this for two years and recently had the study published,” said Chen. “Some of the pieces have been demonstrated in the past, but this is the first time we have used all of the pieces together.”

The study determined that this new method of virus tracking would be extremely useful in environmental monitoring and perhaps counterterrorism detection.

Provided by University of California, Riverside

Explore further: New material steals oxygen from the air

add to favorites email to friend print save as pdf

Related Stories

SR Labs research to expose BadUSB next week in Vegas

Jul 31, 2014

A Berlin-based security research and consulting company will reveal how USB devices can do damage that can conduct two-way malice, from computer to USB or from USB to computer, and can survive traditional ...

Laser makes microscopes way cooler

Aug 15, 2014

(Phys.org) —Laser physicists have found a way to make atomic-force microscope probes 20 times more sensitive and capable of detecting forces as small as the weight of an individual virus.

Recommended for you

New material steals oxygen from the air

16 hours ago

Researchers from the University of Southern Denmark have synthesized crystalline materials that can bind and store oxygen in high concentrations. Just one spoon of the substance is enough to absorb all the ...

Driving cancer cells to suicide

16 hours ago

Ludwig Maximilian University of Munich researchers report that a new class of chemical compounds makes cancer cells more sensitive to chemotherapeutic drugs. They have also pinpointed the relevant target ...

Neutral self-assembling peptide hydrogel

20 hours ago

Self-assembling peptides are characterized by a stable β-sheet structure and are known to undergo self-assembly into nanofibers that could further form a hydrogel. Self-assembling peptide hydrogels have ...

User comments : 0