Early Virus Detection in Cells Made Possible by New Research

Nov 25, 2008

The benefits of real-time virus tracking, made possible through research from UCR’s Bourns College of Engineering and the College of Natural and Agricultural Sciences (CNAS) include faster detection and better understanding of antiviral treatments. Work at Bourns and CNAS to provide a significant tool for the rapid detection of viral infection was reported in the Proceedings of the National Academy of Sciences Nov. 11, 2008, edition.

In addition to quick infection detection, the work also has important implications for conducting therapeutic studies of antiviral treatments. Current techniques to detect viruses can take days or weeks.

“If you can detect them earlier and implement prevention procedures, you can delay the infection process,” said Wilfred Chen, professor of chemical and environmental engineering, Bourns College of Engineering, who with student Hsaio-Yun Yeh, Ashok Mulchandani, professor of chemical engineering, and Marylynn Yates, professor of environmental sciences, CNAS, completed the study. The paper is entitled "Visualizing the dynamics of viral replication in living cells via TAT-peptide delivery of nuclease-resistant molecular beacons.”

The UCR team’s study describes using a probe to enter cells, which fluoresces when it detects the viral nucleic acid. Researchers are then able to observe in real time the virus’s reproductive cycle and its spread from cell to cell.

“Our goal was to develop a method to follow virus replication in living cells,” Chen said. “It’s a generalized concept.”

Chen said that while some viruses can replicate quickly, enabling detection within a few days, others can take more than a week to detect using traditional methods.

“We have been working on this for two years and recently had the study published,” said Chen. “Some of the pieces have been demonstrated in the past, but this is the first time we have used all of the pieces together.”

The study determined that this new method of virus tracking would be extremely useful in environmental monitoring and perhaps counterterrorism detection.

Provided by University of California, Riverside

Explore further: New molecule puts scientists a step closer to understanding hydrogen storage

add to favorites email to friend print save as pdf

Related Stories

Automating laboratory-on-a-chip to cut healthcare costs

Jun 16, 2014

A research team at the University of California, Riverside has created a computer programming language that will automate "laboratory-on-a-chip" technologies used in DNA sequencing, drug discovery, virus ...

Researchers use virus to reveal nanopore physics

Jun 16, 2014

Nanopores may one day lead a revolution in DNA sequencing. By sliding DNA molecules one at a time through tiny holes in a thin membrane, it may be possible to decode long stretches of DNA at lightning speeds. ...

Two-lock box delivers cancer therapy

May 06, 2014

Rice University scientists have designed a tunable virus that works like a safe deposit box. It takes two keys to open it and release its therapeutic cargo.

Cloaked DNA nanodevices survive pilot mission

Apr 22, 2014

It's a familiar trope in science fiction: In enemy territory, activate your cloaking device. And real-world viruses use similar tactics to make themselves invisible to the immune system. Now scientists at ...

Recommended for you

A new approach to creating organic zeolites

Jul 24, 2014

Yushan Yan, Distinguished Professor of Engineering at the University of Delaware, is known worldwide for using nanomaterials to solve problems in energy engineering, environmental sustainability and electronics.

User comments : 0