Researchers investigate how plants adapt to climate

Nov 24, 2008 By Kayvon Shargi

(PhysOrg.com) -- How many mouths does a plant need in order to survive? The answer changes depending on climate, and some of the decisions are made long before a new leaf sprouts.

Stanford researchers have found that the formation of microscopic pores called stomata (derived from the Greek word stoma, meaning mouth) is controlled by a specific signaling pathway that blocks activity of a single protein required for stomata development. The findings are described in a paper published Nov. 14 in Science.

Stomata are found on almost every terrestrial plant on Earth. Their multiple roles include releasing moisture and oxygen into the environment, providing internal air conditioning for the plant and allowing carbon dioxide to enter the leaf, where it is converted to sugar during photosynthesis. Stomata are essential for the survival of plants and, by absorbing carbon from the atmosphere, play a significant role in maintaining the health of the planet.

Using Arabidopsis thaliana, a fast-growing, flowering plant used for genetic and developmental studies, Dominique Bergmann, an assistant professor of biology, and paper co-authors Gregory Lampard, a postdoctoral fellow, and Cora MacAlister, a PhD student, found a unique structural region on a protein with 10 sites that can be modified by a well-known, environmentally-controlled signaling pathway to dictate the number of stomata a plant makes.

"Scientists have said that the environment affects plant development, but no one could point to a protein that was responsible for that response," Bergmann said. "Now we know a major target inside the cell and how it is regulated."

Knowing how this process works could be used to modify crops in order to maximize their productivity under changing climate conditions. Plants might initially benefit as a result of the increased carbon supply in the atmosphere due to global warming, Bergmann said, but would also respond to those conditions by making fewer stomata. The result? Loss of cooling through stomata could lead to widespread crop failures due to the rise in temperatures associated with global warming.

"There are circumstances where you might want to disconnect the signals plants receive from the environment so they can survive," Bergmann said.

The protein, which the researchers dubbed SPEECHLESS, initiates the first of a three-step cell division process that leads to the formation of stomata in plants. Though structurally similar to SPEECHLESS, two other proteins involved in subsequent steps do not contain the same control region that is regulated by the signaling pathway. This provides a unique mechanism for the signaling pathway to control SPEECHLESS activity in a set of stem-cell-like cells and hence the ultimate development of stomata.

"If I were designing the leaf, that would be the part I would put under really tight control," Bergmann said. "It seems as if that's what plants have done."

Certain trade-offs exist for plants having too many or too few stomata. To help determine the number of stomata a newly sprouting leaf should form, the plant takes key factors about its surrounding climate—carbon dioxide levels, temperature and humidity—into account.

To perceive these factors, the plant uses the same signaling pathway used to control SPEECHLESS activity. The study identifies a critical junction that connects how a plant can sense environmental conditions with how this information is relayed to stomatal-development pathways. Thus, development of stomata can be altered "on the fly" to better enable the plant to cope with environmental conditions.

For example, a leaf contains fewer pores when carbon dioxide in the atmosphere is in abundance and more when it is limited. If conditions change, this multi-faceted signaling system can enable fine-tuning of stomatal development.

Science paper: www.sciencemag.org/cgi/content/full/322/5904/1113

Provided by Stanford University

Explore further: Dairy farms asked to consider breeding no-horn cows

Related Stories

Measuring the pulse of trees

Mar 16, 2015

I read many years ago that if you wanted a tree to recognise you, you would need to sit quietly at its base for a week. Very Zen!

Fluid-filled pores separate materials with precision

Mar 06, 2015

In nature, pores can continuously control how a living organism absorbs or excretes fluids, vapors and solids in response to its environment; for example, tiny holes invisible to the naked eye called stomata ...

Researchers reprogram plants for drought tolerance

Feb 04, 2015

Crops and other plants are constantly faced with adverse environmental conditions, such as rising temperatures (2014 was the warmest year on record) and lessening fresh water supplies, which lower yield and ...

Improved soil condition increases moisture for crops

Feb 03, 2015

Tillage practices that conserve moisture, plants that use water more efficiently and soil with more organic matter have produced higher yields even in dry conditions, according to soil scientist David Clay, ...

To wilt or not to wilt?

May 14, 2014

The growth hormone abscisic acid affects the ability of plants to control water loss through their leaves as well as their ability to recuperate after drought conditions. Early growth conditions are crucial ...

Recommended for you

Hunting for living fossils in Indonesian waters

13 minutes ago

The Coelacanth (Latimeria menadoensis) was thought to be extinct for more than 60 million years and took the science world by storm in 1938 when it was re-discovered living in South Africa. This fish has ...

Equatorial fish babies in hot water

20 minutes ago

Scientists have discovered that rising ocean temperatures slow the development of baby fish around the equator, raising concerns about the impact of global warming on fish and fisheries in the tropics.

Beneficial insect virus gets boost as crop pest fighter

53 minutes ago

Common baking ingredients may offer a way to bolster the effectiveness of Cydia pomonella granulovirus (CpGV), a natural insect pathogen that's been commercially formulated to kill codling moth larvae, a ...

Researcher among best in protein modeling contests

1 hour ago

A Purdue University researcher ranks among the best in the world in bioinformatics competitions to predict protein structure, docking and function, making him a triple threat in the world of protein modeling.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.