MIT engineers show how tiny cell proteins generate force to 'walk'

Nov 24, 2008 By Anne Trafton
Kinesin, a small motor protein found in cells, walks stepwise on microtubules to perform cellular processes. In each step, a power stroke is generated when two mechanical elements (neck linker, in red, and cover strand, in blue) form a beta-sheet that folds to drive the protein forward. Image courtesy / Ahmad S. Khalil; Kathleen M. Flynn; and Wonmuk Hwang

(PhysOrg.com) -- MIT researchers have shown how a cell motor protein exerts the force to move, enabling functions such as cell division.

Kinesin, a motor protein that also carries neurotransmitters, "walks" along cellular beams known as microtubules. For the first time, the MIT team has shown at a molecular level how kinesin generates the force needed to step along the microtubules.

The researchers, led by Matthew Lang, associate professor of biological and mechanical engineering, report their findings in the Nov. 24 online early issue of the Proceedings of the National Academy of Sciences.

Because kinesin is involved in organizing the machinery of cell division, understanding how it works could one day be useful in developing therapies for diseases involving out-of-control cell division, such as cancer.

The protein consists of two "heads," which walk along the microtubule, and a long "tail," which carries cargo. The heads take turns stepping along the microtubule, at a rate of up to 100 steps (800 nanometers) per second.

In the PNAS paper, Lang and his colleagues offer experimental evidence for a model they reported in January in the journal Structure. Their model suggests — and the new experiments confirm — that a small region of the protein, part of which joins the head and tail is responsible for generating the force needed to make kinesin walk. Two protein subunits, known as the N-terminal cover strand and neck linker, line up next to each other to form a sheet, forming the cover-neck bundle that drives the kinesin head forward.

"This is the kinesin power stroke," said Lang.

Next, Lang's team plans to investigate how the two kinesin heads communicate with each other to coordinate their steps.

Source: Massachusetts Institute of Technology

Explore further: Dwindling wind may tip predator-prey balance

add to favorites email to friend print save as pdf

Related Stories

Some motor proteins cooperate better than others

Jan 09, 2014

Rice University researchers have engineered cells to characterize how sensitively altering the cooperative functions of motor proteins can regulate the transport of organelles.

RNA on the move

Nov 26, 2009

In the fruit fly Drosophila, oskar mRNA, which is involved in defining the animal’s body axes, is produced in the nuclei of nurse cells neighbouring the oocyte, and must be transported to the oocyte and ...

Dartmouth researchers find new protein function

Jan 09, 2009

A group of Dartmouth researchers has found a new function for one of the proteins involved with chromosome segregation during cell division. Their finding adds to the growing knowledge about the fundamental ...

Hitchhiking nanotubes show how cells stir themselves

May 30, 2014

(Phys.org) —Chemical engineers from Rice University and biophysicists from Georg-August Universität Göttingen in Germany and the VU University Amsterdam in the Netherlands have successfully tracked single ...

Kinesin-5 structure opens cancer drug targets

Apr 08, 2014

The structure of a key part of the machinery that allows cells to divide has been identified by researchers at the University of California, Davis—opening new possibilities for throwing a wrench in the machine and blocking ...

Recommended for you

Dwindling wind may tip predator-prey balance

19 hours ago

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Research helps steer mites from bees

Sep 19, 2014

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

User comments : 0