Researchers discover strategy for predicting the immunity of vaccines

Nov 23, 2008

In the first study of its kind, researchers at the Yerkes National Primate Research Center and Emory Vaccine Center, Emory University, have developed a multidisciplinary approach involving immunology, genomics and bioinformatics to predict the immunity of a vaccine without exposing individuals to infection. This approach addresses a long-standing challenge in the development of vaccines--that of only being able to determine immunity or effectiveness long after vaccination and, often, only after being exposed to infection.

The study, which used the yellow fever vaccine (YF-17D) as a model, is available in the online edition of Nature Immunology and represents a long awaited step forward in vaccine immunology and predictive health.

YF-17D is one of the most successful vaccines ever developed and has been administered to nearly half a billion people over the last 70 years.

"A single shot of the vaccine induces immunity in many people for nearly 30 years," says Bali Pulendran, PhD, lead Yerkes researcher of the study and professor in the Department of Pathology and Laboratory Medicine at Emory University School of Medicine. "Despite the great success of the yellow fever vaccine, little has been known about the immunological mechanisms that make it effective," he continues.

Pulendran's team, including graduate student Troy Querec, PhD, in collaboration with Rafi Ahmed, PhD, director of the Emory Vaccine Center, Eva Lee, PhD, Georgia Institute of Technology, and Alan Aderem, PhD, Institute for Systems Biology in Seattle, sought to determine what makes such a vaccine effective so researchers can design new vaccines against global pandemics and emerging infections that repeat the success of this model vaccine.

The researchers used YF-17D to predict the body's ability shortly after immunization to stimulate a strong and enduring immunity. Researchers vaccinated 15 healthy individuals with YF-17D and studied the T cell and antibody responses in their blood. There was a striking variation in these responses between individuals. Analysis of gene expression patterns in white blood cells revealed in the majority of the individuals the vaccine induced a network of genes involved in the early innate immune response against viruses.

"Using a bioinformatics approach, we were able to identify distinct gene signatures that correlated with the T cell response and the antibody response induced by the vaccine," says Pulendran. "To determine whether these gene signatures could predict immune response, we vaccinated a second group of individuals and were able to predict with up to 90 percent accuracy which of the vaccinated individuals would develop a strong T or B cell immunity to yellow fever," continues Pulendran.

Pulendran and his colleagues are now working to determine whether this approach can be used to predict the effectiveness of other vaccines, including flu vaccines. The ability to successfully predict the immunity and effectiveness of vaccines would facilitate the rapid evaluation of new and emerging vaccines, and the identification of individuals who are unlikely to be protected by a vaccine.

"This type of research is essential to answer fundamental questions that can lead to better vaccinations and prevention of disease. Yerkes, as one of only eight National Institutes of Health–designated national primate research centers, is uniquely positioned to carry out such diverse research," says Stuart Zola, PhD, director, Yerkes Research Center.

Source: Emory University

Explore further: US scientists make embryonic stem cells from adult skin

add to favorites email to friend print save as pdf

Related Stories

NASA to conduct unprecedented twin experiment

Apr 11, 2014

Consider a pair of brothers, identical twins. One gets a job as an astronaut and rockets into space. The other gets a job as an astronaut, too, but on this occasion he decides to stay home. After a year ...

Hookworm genome sequenced

Jan 19, 2014

Going barefoot in parts of Africa, Asia and South America contributes to hookworm infections, which afflict an estimated 700 million of the world's poor. The parasitic worm lives in the soil and enters the body through the ...

'Nanosponge vaccine' fights MRSA toxins

Dec 01, 2013

Nanosponges that soak up a dangerous pore-forming toxin produced by MRSA (methicillin-resistant Staphylococcus aureus) could serve as a safe and effective vaccine against this toxin. This "nanosponge vaccin ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

Apr 18, 2014

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments : 0

More news stories

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.