Sweet success for new stem cell ID trick

Nov 20, 2008

(PhysOrg.com) -- Biomaterial scientists in Manchester believe they have found a new way of isolating the ‘ingredients’ needed for potential stem cell treatments for nerve damage and heart disease.

And the technique could also be used in the future to improve the efficiency of bone marrow transplants.

Dr Catherine Merry and Dr Rebecca Baldwin from The School of Materials – working with colleagues from the Paterson Institute for Cancer Research and Nijmegen University in the Netherlands – have developed antibodies that can recognise different patterns within the natural sugars that coat cells in the body.

Writing in the journal Stem Cells, the Manchester scientists report how the technique allows cells to be clearly identified depending on whether the antibodies bind themselves to the cells or not.

Using this method, they can efficiently isolate blood stem cells generated from embryonic stem cells, which then have the potential to be used in the treatment of people with heart and blood cell problems.

The researchers report how the sugars displayed on the surface of a small population of blood stem cells allow them to be distinguished from similar cells which lack blood forming ability.

They believe these sugars may also allow these cells to respond better to the signals which instruct them to become mature blood cell types.

Dr Baldwin, who conducted the research, said: “We were surprised to find that populations of cells which we had previously thought to be all the same were actually mixtures of cell types with differences in their cell surface sugars.

“By using the sugar tags to pull apart this jumble of cells, we can potentially improve the efficiency with which we can make blood cells from embryonic stem cells. Usually we would need to genetically manipulate the DNA in the cells to allow us to tag them in this way.

“We believe our research suggests how sugars can be used to help embryonic stem cells grow in the lab – and also how they can be instructed to become cell types which could be of use in human therapies. These sugars are on the surface of almost all cells and we are looking to see if the same ‘trick’ can be used to make nerve cells.

“Our technique could also be used to improve the efficiency of bone marrow transplantation. After radiotherapy, it could be used to distinguish cells capable of rapidly producing blood cells.

“Although the prospect of creating cells from embryonic stem cells for use in human therapies is still a considerable time away, research such as ours helps move towards this goal.”

All cells that make up the tissues of the body – such as skin, liver, brain and blood – are surrounded by a layer of sugars that coat the cells. These sugars help the cells to know what type of cell they are and to respond to the other cells which surround them and the chemical messages that pass between them.

Provided by University of Manchester

Explore further: Environmental pollutants make worms susceptible to cold

add to favorites email to friend print save as pdf

Related Stories

Stem cells use 'first aid kits' to repair damage

Sep 18, 2014

Stem cells hold great promise as a means of repairing cells in conditions such as multiple sclerosis, stroke or injuries of the spinal cord because they have the ability to develop into almost any cell type. ...

Controlling the transition between generations

Sep 18, 2014

Rafal Ciosk and his group at the FMI have identified an important regulator of the transition from germ cell to embryonic cell. LIN-41 prevents the premature onset of embryonic transcription in oocytes poised ...

Recommended for you

Environmental pollutants make worms susceptible to cold

2 hours ago

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Research helps steer mites from bees

4 hours ago

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

User comments : 0