Misreading of damaged DNA may spur tumor formation

Nov 20, 2008

The DNA in our cells is constantly under assault from oxygen, the sun's radiation and environmental stresses. Most of the time, our cells can repair the damage before it gets copied into a permanent mutation that could lead to cancer.

Adding a wrinkle to our understanding of how cancers begin, scientists have found that cells can turn on tumor-promoting growth circuits as a result of misreading damaged DNA without copying it: a process called "transcriptional mutagenesis."

The results are published online this week in Proceedings of the National Academy of Sciences.

"This reveals a new aspect of tumor development that could be especially important for cells that make up most of the body's tissues: differentiated cells that are not replicating their DNA," says Paul Doetsch, PhD, professor of biochemistry at Emory University School of Medicine and deputy director of basic research at Emory Winship Cancer Institute.

All cells, including non-dividing cells that are not replicating their DNA, continue to transcribe, or make RNA, from some of their genes in order to produce proteins and carry out their normal functions.

Doetsch and postdoctoral researcher Tina Saxowsky, PhD, examined what happens when mouse cells are presented with DNA pre-loaded with a damaged building block in a critical place.

The DNA encoded the gene Ras, one of the genes most often mutated in human cancers. The damage came in the form of 8-oxoguanine, which is generated when guanine, one of the four bases making up DNA, reacts with oxygen. (The four bases are: Adenine, Guanine, Cytosine and Thymine.) Cells unable to repair the damage tend to replace the modified guanine (G) with thymine (T).

"It's one of the most common forms of genetic damage," Doetsch says. "Constantly dealing with oxidation is the price we pay for breathing air."

If the cells misread the G as T during the process of transcription, some of the Ras protein they make comes in the hyperactivated form found in cancers. By looking at other proteins controlled by Ras, the authors could detect some of the cell's growth circuits starting to turn on.

By reading the RNA the cells make from the Ras DNA, Saxowsky found that even normal mouse cells misread the damaged DNA about three percent of the time. Sometimes the cell's machinery sees the damaged G as T, and sometimes it skips a letter. However, the mouse cells were more likely to misread the 8-oxoguanine (14 percent of the time) if they came from mice engineered to lack an enzyme that normally repairs the damage, called 8-oxoguanine glycosylase.

Doetsch says his group's findings suggest that DNA damage, if it hits certain critical genes in a cell, could lead to transcriptional mutagenesis that in turn spurs the cell to divide.

"Let's say that DNA damage lands in a gene that normally prevents a cell from dividing when it's not supposed to," Doetsch says. "If enough mutant proteins get made from the gene, the cell divides and the DNA is copied. Now, in one of the daughter cells the damage becomes a permanent mutation driving further growth. It's another way for tumor promotion to happen, except the growth signal needed to push the process along isn't coming from a chemical or a hormone."

He and Saxowsky are performing additional experiments to test the hypothesis that transcriptional mutagenesis can lead to cell division directly.

Transcriptional mutagenesis could explain a phenomenon seen in bacteria called adaptive mutagenesis, Doetsch says. When faced with starvation conditions, bacteria can relax their standards of accuracy when copying their DNA, apparently in an effort to mutate their way out of a dead end.

It appears that bacterial enzymes that make RNA from DNA are more susceptible to transcriptional mutagenesis than those from mammals, Doetsch notes, but further studies are required.

Cancer is essentially the "selfish" growth of a small group of cells at the expense of the person they came from, an issue that does not arise in one-celled organisms such as bacteria, he says.

Citation: 8-oxoguanine-mediated transcriptional mutagenesis causes Ras activation in mammalian cells, Saxowsky, T.T. et al. Proceedings of the National Academy of Sciences, Early online publication November 17, 2008

Source: Emory University

Explore further: Researcher develops, proves effectiveness of new drug for spinal muscular atrophy

add to favorites email to friend print save as pdf

Related Stories

Cellular RNA can template DNA repair in yeast

Sep 03, 2014

The ability to accurately repair DNA damaged by spontaneous errors, oxidation or mutagens is crucial to the survival of cells. This repair is normally accomplished by using an identical or homologous intact ...

How to tell good stem cells from the bad

Sep 05, 2014

The promise of embryonic stem cell research has been thwarted by an inability to answer a simple question: How do you know a good stem cell from a bad one?

New functions for chromatin remodelers

Aug 28, 2014

Large molecular motors consisting of up to a dozen different proteins regulate access to the genome, which is essential for the transcription of genes and for the repair of DNA damage. Susan Gasser and her ...

Recommended for you

Cellular protein may be key to longevity

15 hours ago

Researchers have found that levels of a regulatory protein called ATF4, and the corresponding levels of the molecules whose expression it controls, are elevated in the livers of mice exposed to multiple interventions ...

Gut bacteria tire out T cells

18 hours ago

Leaky intestines may cripple bacteria-fighting immune cells in patients with a rare hereditary disease, according to a study by researchers in Lausanne, Switzerland. The study, published in The Journal of Experimental Me ...

T-bet tackles hepatitis

18 hours ago

A single protein may tip the balance between ridding the body of a dangerous virus and enduring life-long chronic infection, according to a report appearing in The Journal of Experimental Medicine.

User comments : 0