Researchers define ideal time for stem cell collection for Parkinson's disease therapy

Nov 19, 2008

Researchers have identified a stage during dopamine neuron differentiation that may be an ideal time to collect human embryonic stem cells for transplantation to treat Parkinson's disease, according to data presented at Neuroscience 2008, the 38th annual meeting of the Society for Neuroscience.

Lorraine Iacovitti, Ph.D., professor and interim director of the Farber Institute for Neurosciences of Thomas Jefferson University, and her research team found that neural progenitor cells that express the gene Lmx1a are committed to the midbrain dopamine neuron lineage, but still retain proliferative capacity. Because of these characteristics, the stage at which Lmx1a is expressed may be ideal for transplantation.

"Identifying the subset of developing dopamine neurons and selecting those cells at the stage appropriate for their transplantation has been challenging," said Dr. Iacovitti. "Our research demonstrates that we are now able to grow neurons and select the ones that may work as a therapy, without the use of synthetic genes. This advance represents an important leap forward in the quest to devise a viable cell replacement therapy for Parkinson's disease."

The Lmx1a-positive cells cannot be identified solely by this transcription factor. However, Dr. Iacovitti and her team also found that a large percentage of the Lmx1a-positive cells express a cell surface protein called TrkB. This protein was not expressed on any of the other cell types identified in the cell culture. With TrkB as a cell surface marker, dopamine neuron progenitor cells derived from human embryonic stem cells can be selected from a heterogenous population using magnetic-activated cell sorting (MACS) or fluorescence-activated cell sorting (FACS). Neither process alters the stem cell's genome. Dr. Iacovitti and her team are now testing the ability of these cells to counteract Parkinson's disease in animal models. They will also be adapting these procedures developed in human embryonic stem cells to adult-derived human induced-pluripotent stem cells.

Source: Thomas Jefferson University

Explore further: New compounds protect nervous system from the structural damage of MS

add to favorites email to friend print save as pdf

Related Stories

Appeals court considering warrantless cellphone tracking

1 hour ago

(AP)—Now that the cellphone in your pocket can be used to track your movements, federal appeals judges in Atlanta are considering whether investigators must get a search warrant from a judge to obtain cellphone tower tracking ...

Engineers put the 'squeeze' on human stem cells

Feb 10, 2015

After using optical tweezers to squeeze a tiny bead attached to the outside of a human stem cell, researchers now know how mechanical forces can trigger a key signaling pathway in the cells.

Recommended for you

Mystery of the reverse-wired eyeball solved

21 hours ago

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

21 hours ago

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.