Researchers define ideal time for stem cell collection for Parkinson's disease therapy

Nov 19, 2008

Researchers have identified a stage during dopamine neuron differentiation that may be an ideal time to collect human embryonic stem cells for transplantation to treat Parkinson's disease, according to data presented at Neuroscience 2008, the 38th annual meeting of the Society for Neuroscience.

Lorraine Iacovitti, Ph.D., professor and interim director of the Farber Institute for Neurosciences of Thomas Jefferson University, and her research team found that neural progenitor cells that express the gene Lmx1a are committed to the midbrain dopamine neuron lineage, but still retain proliferative capacity. Because of these characteristics, the stage at which Lmx1a is expressed may be ideal for transplantation.

"Identifying the subset of developing dopamine neurons and selecting those cells at the stage appropriate for their transplantation has been challenging," said Dr. Iacovitti. "Our research demonstrates that we are now able to grow neurons and select the ones that may work as a therapy, without the use of synthetic genes. This advance represents an important leap forward in the quest to devise a viable cell replacement therapy for Parkinson's disease."

The Lmx1a-positive cells cannot be identified solely by this transcription factor. However, Dr. Iacovitti and her team also found that a large percentage of the Lmx1a-positive cells express a cell surface protein called TrkB. This protein was not expressed on any of the other cell types identified in the cell culture. With TrkB as a cell surface marker, dopamine neuron progenitor cells derived from human embryonic stem cells can be selected from a heterogenous population using magnetic-activated cell sorting (MACS) or fluorescence-activated cell sorting (FACS). Neither process alters the stem cell's genome. Dr. Iacovitti and her team are now testing the ability of these cells to counteract Parkinson's disease in animal models. They will also be adapting these procedures developed in human embryonic stem cells to adult-derived human induced-pluripotent stem cells.

Source: Thomas Jefferson University

Explore further: Clipping proteins that package genes may limit abnormal cell growth in tumors

add to favorites email to friend print save as pdf

Related Stories

Signaling molecule crucial to stem cell reprogramming

4 hours ago

While investigating a rare genetic disorder, researchers at the University of California, San Diego School of Medicine have discovered that a ubiquitous signaling molecule is crucial to cellular reprogramming, a finding with ...

Surrogate sushi: Japan biotech for bluefin tuna

12 hours ago

Of all the overfished fish in the seas, luscious, fatty bluefin tuna are among the most threatened. Marine scientist Goro Yamazaki, who is known in this seaside community as "Young Mr. Fish," is working to ...

Scientists map mouse genome's 'mission control centers'

Nov 19, 2014

When the mouse and human genomes were catalogued more than 10 years ago, an international team of researchers set out to understand and compare the "mission control centers" found throughout the large stretches ...

Recommended for you

Organovo has 3D-printed liver tissue for drug testing

Nov 20, 2014

(Medical Xpress)—The commercial release of 3D printed liver tissue was announced earlier this week. Organovo is the company behind the release. The product is intended for use for preclinical drug discovery ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.