Researchers use fluorescence to develop method for detecting mercury in fish

Nov 18, 2008

Researchers at the University of Pittsburgh have developed a simple and quick method for detecting mercury in fish and dental samples, two substances at the center of public concern about mercury contamination. The technique involves a fluorescent substance that glows bright green when it comes into contact with oxidized mercury, the researchers report in the current online edition of the Journal of the American Chemical Society. The intensity of the glow indicates the amount of mercury present.

Developed in the laboratory of Kazunori Koide (Ko-ee-deh), a chemistry professor in Pitt's School of Arts and Sciences, the new method can be used onsite and can detect mercury in 30 to 60 minutes for dental fillings (or amalgams) or 10 to 30 minutes for fish, Koide explained. "Our method could be used in the fish market or the dentist office," he said. "We have developed a reliable indicator for mercury that a person could easily and safely use at home."

The fluorescence results from the reaction of mercury ions with hydrocarbons called alkynes—the alkyne is converted into a ketone and creates a fluorescent molecule. Koide's method differs from similar mercury indicators in that it withstands the oxidation process mercury samples must undergo prior to testing, Koide said. The mercury species found in most fish and dental amalgams—such as the toxic methyl mercury—must be converted into a safer variety of mercury with an oxidizing agent. Other fluorescent detectors are often not compatible with samples that have been oxidized.

In testing fish, Koide and his team oxidized a piece of salmon (about the size of a fingertip) in water mixed with a chlorine solution similar to household bleach. The conversion process is safe and relatively simple, Koide said. Afterward, the team added the alkyne solution and the mixture glowed bright green.

The Pitt researchers also tested for mercury leaching from dental amalgam, a common tooth filling composed primarily of mercury mixed with smaller amounts of other metals. Concern exists about the mercury seeping from a filling into a person's body and about the disposal of unused amalgam by dentist offices (which is not federally regulated in the United States). To test for leaching, the team pressed a cloth to a tooth with an amalgam filling for one minute; the sample glowed when exposed to the mercury-detecting agent. They also submerged two amalgam-filled teeth in the amino acid cysteine to mimic sulfur-rich foods, which are thought to increase mercury seepage from amalgam. Again, the cysteine solution turned bright green when the indicator was added, suggesting that Koide's method can also be used to monitor mercury leaching caused by sulfur-rich food.

In terms of amalgam disposal, Koide suggested that his method could be used to test dentist office wastewater for mercury content onsite without sending samples to analytical laboratories.

Source: University of Pittsburgh

Explore further: Incorporation of DOPA into engineered mussel glue proteins

add to favorites email to friend print save as pdf

Related Stories

Lessons for saving our forests

23 minutes ago

In late July, UC Berkeley fire ecologist Scott Stephens was working in Stanislaus National Forest, gathering data on how a century had altered its character. What he saw were the signs of a clear and present ...

Religious acceptance of homosexuals on the rise

13 minutes ago

The willingness of religious congregations to welcome homosexuals as members—and place them in leadership positions—is on the rise, according to a new Duke University study.

What's at stake with Windows 9?

33 minutes ago

When Microsoft presents its first public glimpse of Windows 9 - it's expected to happen late this month or early next - a lot more than just an operating system is at stake.

Fluid mechanics suggests alternative to quantum orthodoxy

42 minutes ago

The central mystery of quantum mechanics is that small chunks of matter sometimes seem to behave like particles, sometimes like waves. For most of the past century, the prevailing explanation of this conundrum ...

Recommended for you

Separation of para and ortho water

20 hours ago

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0